The Lower and Upper Forcing Geodetic Numbers of Block-cactus Graphs
Fu-Hsing Wang, Yue-Li Wang, and Jou-Ming Chang
European Journal of Operational Research, Vol. 175, No. 1, (2006) pp. 238-245.

The above article has been cited by the articles listed below.
  1. Fu-Hsing Wang, The lower and upper forcing geodetic numbers of complete n-partite graphs, n-dimensional meshes and tori, International Journal of Computer Mathematics 87 (2010) 2677-2687. (*)

  2. Bostjan Bresar, Matjaz Kovse, Aleksandra Tepeh, Geodetic sets in graph, In: Matthias Dehmer (ed), Structural Analysis of Complex Networks (Springer, 2011) pp. 197-218. (*)

  3. Tinaz Ekim, Aysel Erey, Pinar Heggernes, Pim van't Hof, Daniel Meister, Computing minimum geodetic sets of proper interval graphs, 10th Latin American Symposium on Theoretical Informatics (LATIN 2012), Lecture Notes in Computer Science 7256 (2012) 279-290. (*)

  4. Ignacio M. Pelayo, Geodesic Convexity in Graphs, Springer Briefs in Mathematics, (Springer, 2011) pp. 1-112. (*)

  5. Tinaz Ekim, Aysel Erey, Block decomposition approach to compute a minimum geodetic set, RAIRO-Operations Research, 48 (2014) 497-507. (*)

  6. V. A. Voblyi, A. K. Meleshko, Enumeration of labeled block-cactus graphs, Journal of Applied and Industrial Mathematics, 8 (2014) 422-427.

  7. Hossein Abdollahzadeh Ahangar, Saeed Kosary, Seyed Mahmoud Sheikholeslami, Lutz Volkmann, Graphs with large geodetic number, Filomat, 29 (2015) 1361-1368. (*)

  8. H.A. Ahangar, F. Fujie-Okamoto, V. Samodivkin, On the forcing connected geodetic number and the connected geodetic number of a graph, ARS Combinatoria, 126 (2016) 323-335. (*)

  9. H.A. Ahangar, V. Samodivkin, The total geodetic number of a graph, Utilitas Mathematica, 100 (2016) 253-268. (*)

  10. Hossein Abdollahzadeh Ahanga, Graphs with large total geodetic number, Filomat, 31 (2017) 4297-4304. (*)

  11. Paul Manuel, Sandi Klavzar, Antony Xavier, Andrew Arokiaraj, Elizabeth Thomas, Strong geodetic problem in networks, Discussiones Mathematicae Graph Theory, 40 (2019) 307-321. (*)

  12. Ahmad T. Anaqreh, Boglarka G.-Toth, Tamas Vinko, Algorithmic upper bounds for graph geodetic number, arXiv:2011.10989 [cs.DS]

  13. J. John, V. Sujin Flower, The edge-to-edge geodetic domination number of a graph, Proyecciones (Antofagasta, On line), 40(3) (2021) 635-658.

  14. James Tuite, Elias John Thomas, Ullas Chandran S. V., On some extremal position problems for graphs, arXiv:2106.06827 [math.CO]

  15. Ahmad T. Anaqreh, Boglarka G.-Toth, Tamas Vinko, Symbolic regression for approximating graph geodetic number, Acta Cybernetica 25(2) (2021) 151-169. (*)

  16. Ahmad T. Anaqreh, Boglarka G.-Toth, Tamas Vinko, Algorithmic upper bounds for graph geodetic number, Central European Journal of Operations Research 30(4) (2022) 1221-1237. (*)

Times cited: 12 (from Web of Science)