Parallel Construction of Independent Spanning Trees on Enhanced Hypercubes

Jinn-Shyong Yang, Jou-Ming Chang, Kung-Jui Pai, and Hung-Chang Chan

Appendix A
 Proofs of Claims in Theorem 1.

In the following proofs, we assume that $H_{n}^{1}(x)=$ $\left\{f_{s-1}, f_{s-2}, \ldots, f_{0}\right\}$ with $f_{s-1}>f_{s-2}>\cdots>f_{0}$ and $H_{n}^{0}(x)=\left\{g_{t-1}, g_{t-2}, \ldots, g_{0}\right\}$ with $g_{t-1}>g_{t-2}>\cdots>$ g_{0}, where all index arithmetics of f_{p} are taken modulo s, and all index arithmetics of g_{q} are taken modulo t.
Claim 1.1. If x matches one of the conditions in Eqs. (1), (2), (3), (4), (5), (6) (or (6')), then there is a unique path that connects x and 0 in T_{i}.

Proof. Let $j=\operatorname{NEXT}_{x}(i)$ and suppose $x \neq 0$. There are the following scenarios:
Case 1: $i \in H_{n-k}^{1}(x),\left|H_{n-k}^{1}(x)\right| \leqslant(n-k) / 2+\lambda$ and $H_{i}^{1}(x)=\emptyset$ (cf. Eq. (5)). In this case, $j=\max H_{n}^{1}(x)=$ f_{s-1}. Since $x_{j}=1, x$ is adjacent to $x-2^{j}$ in T_{i}. Let $y=$ $x-2^{j}$. Clearly, $H_{n}^{1}(y)=\left\{f_{s-2}, f_{s-3}, \ldots, f_{0}\right\}$. Note that $\left|H_{n-k}^{1}(y)\right| \leqslant\left|H_{n-k}^{1}(x)\right| \leqslant(n-k) / 2+\lambda$ and $H_{i}^{1}(y)=$ $H_{i}^{1}(x)=\emptyset$. Thus, if $H_{n}^{1}(y)=\emptyset$, then $y=0$. In this case, $x \xrightarrow{-2^{j}} 0$ is the desired path connecting x and 0 in T_{i}. Otherwise, y is still in the situation of Case 1. By the same argument we know that y is adjacent to the node $y-2^{j^{\prime}}$ in T_{i}, where $j^{\prime}=\operatorname{NEXT}_{y}(i)=f_{s-2}$. Repeat this process until the path passes through the node $2^{f_{0}}$ in T_{i}. Therefore, we can find the following unique path that connects x and 0 in $T_{i}: P: x \xrightarrow{-2^{f_{s-1}}}$ $\left(x-2^{f_{s-1}}\right) \xrightarrow{-2^{f_{s}-2}}\left(x-2^{f_{s-1}}-2^{f_{s-2}}\right) \xrightarrow{-2^{f_{s}-3}} \cdots \xrightarrow{-2^{f_{1}}}$ $\left(2^{f_{0}}\right) \xrightarrow{-2^{f_{0}}} 0$.
Case 2: $i \in H_{n-k}^{1}(x),\left|H_{n-k}^{1}(x)\right| \leqslant(n-k) / 2+\lambda$ and $H_{i}^{1}(x) \neq \emptyset$ (cf. Eq. (4)). In this case, since $x_{i}=1$ and $H_{i}^{1}(x) \neq \emptyset$, we suppose $i=f_{p}$ for some $0<$ $p \leqslant s-1$. By Eq. (4), $j=\max H_{i}^{1}(x)=f_{p-1}$. Since $x_{j}=1, x$ is adjacent to $x-2^{j}$ in T_{i}. Let $y=x-2^{j}$. Clearly, $H_{i}^{1}(y)=\left\{f_{p-2}, f_{p-3}, \ldots, f_{0}\right\}$ and $\left|H_{n-k}^{1}(y)\right|<$ $\left|H_{n-k}^{1}(x)\right| \leqslant(n-k) / 2+\lambda$. Thus, if $H_{i}^{1}(y) \neq \emptyset$, we can repeat this process until the path passes through the node $w=x-\sum_{h=0}^{p-1} 2^{f_{h}}$. Let Q be the path described as follows: $Q: x \xrightarrow{-2^{f_{p-1}}}\left(x-2^{f_{p-1}}\right) \xrightarrow{-2^{f_{p-2}}}\left(x-2^{f_{p-1}}-\right.$ $\left.2^{f_{p-2}}\right) \xrightarrow{-2^{f_{p}-3}} \cdots \xrightarrow{-2^{f_{0}}} w$. Now, it is easy to check that $\left|H_{n-k}^{1}(w)\right|=\left|H_{n-k}^{1}(x)\right|-p \leqslant(n-k) / 2+\lambda$ and $H_{i}^{1}(w)=$ \emptyset. Thus, w is in the situation of Case 1 . Let P be the
path connecting w and 0 . Therefore, we can find the unique path $T_{i}[x, 0]$ by concatenating Q and P.

Case 3: $i \in H_{n-k}^{0}(x)$ and $\left|H_{n-k}^{0}(x)\right|>(n-k) / 2$ (cf. Eq. (3)) In this case, we have $j=i$. Since $x_{j}=0, x$ is adjacent to $x+2^{j}$ in T_{i}. Let $z=x+2^{j}$. Clearly, $z_{i}=\bar{x}_{i}=1$ and $i \in H_{n-k}^{1}(z)$. Also, $\left|H_{n-k}^{0}(x)\right|>(n-$ $k) / 2$ implies $\left|H_{n-k}^{1}(x)\right|<(n-k) / 2$. Thus, we have $\left|H_{n-k}^{1}(z)\right|=\left|H_{n-k}^{1}(x)\right|+1 \leqslant((n-k) / 2-0.5)+1 \leqslant$ $(n-k) / 2+\lambda$, where $\lambda=0.5$ or $\lambda=1$. This shows that z is in the situation of Case 1 for $H_{i}^{0}(z) \neq \emptyset$ or Case 2 for $H_{i}^{0}(z)=\emptyset$. No matter what the situation does z have, let P be the path connecting z and 0 . Therefore, we can find the unique path $T_{i}[x, 0]$ by concatenating $x \xrightarrow{+2^{j}} z$ and P.

Case 4: $i \in H_{n-k}^{0}(x),\left|H_{n-k}^{0}(x)\right| \leqslant(n-k) / 2$, and $H_{i}^{0}(x)=\emptyset$ (cf. Eq. (2)). In this case, we have $j=$ *. Let $z=x \oplus\left(2^{n-k}-1\right)$ be the node adjacent to x in T_{i}. Since $i \in H_{n-k}^{0}(x)$, it implies $z_{i}=\bar{x}_{i}=1$, and thus $i \in H_{n-k}^{1}(z)$. Clearly, $H_{i}^{1}(z)=H_{i}^{0}(x)=\emptyset$. Moreover, $\left|H_{n-k}^{0}(x)\right| \leqslant(n-k) / 2$ implies $\left|H_{n-k}^{1}(z)\right|=$ $\left|H_{n-k}^{0}(x)\right|<(n-k) / 2+\lambda$. This shows that z is in the situation of Case 1. Let P be the path connecting z and 0 . Therefore, we can find the unique path $T_{i}[x, 0]$ by concatenating $x \xrightarrow{*} z$ and P.

Case 5: $i \in H_{n-k}^{0}(x),\left|H_{n-k}^{0}(x)\right| \leqslant(n-k) / 2$, and $H_{i}^{0}(x) \neq \emptyset$ (cf. Eq. (1)). In this case, since $x_{i}=0$, we suppose $i=g_{q}$ for some $0<q \leqslant t-1$. Since $H_{i}^{0}(x) \neq \emptyset$, by Eq. (1) we have $j=\max H_{i}^{0}(x)=g_{q-1}$. Since $x_{j}=0, x$ is adjacent to $x+2^{j}$ in T_{i}. Let $y=x+2^{j}$. Clearly, $H_{i}^{0}(y)=\left\{g_{q-2}, g_{q-3}, \ldots, g_{0}\right\}$ and $\left|H_{n-k}^{0}(y)\right|=$ $\left|H_{n-k}^{0}(x)\right|-1 \leqslant(n-k) / 2$. Thus, if $H_{i}^{0}(y) \neq \emptyset$, we can repeat this process until the path passes through the node $w=x+\sum_{h=0}^{q-1} 2^{g_{h}}$. Let Q be the path described as follows: $Q: x \xrightarrow{+2^{g_{q-1}}}\left(x+2^{g_{q-1}}\right) \xrightarrow{+2^{g_{q}-2}}\left(x+2^{g_{q-1}}+\right.$ $\left.2^{g_{q-2}}\right) \xrightarrow{+2^{g_{q}-3}} \cdots \xrightarrow{+2^{g_{0}}} w$. Now, it is easy to check that $H_{n}^{0}(w)=\left\{g_{t-1}, g_{t-2}, \ldots, g_{q}\right\}$ and $H_{i}^{0}(w)=\emptyset$. Thus, $w_{i}=x_{i}=0$ and $i \in H_{n-k}^{0}(w)$. Since $\left|H_{n-k}^{0}(w)\right|=$ $\left|H_{n-k}^{0}(x)\right|-q \leqslant(n-k) / 2$ and $H_{i}^{0}(w)=\emptyset, w$ is in the situation of Case 4 . Let P be the path connecting w and 0 . Therefore, we can find the unique path $T_{i}[x, 0]$ by concatenating Q and P.

Case 6: $i \in H_{n-k}^{1}(x)$ and $\left|H_{n-k}^{1}(x)\right|>(n-k) / 2+\lambda$ (cf. Eq. (6)). In this case, we have $n-k>2$ and $j=i$.

Since $x_{j}=1, x$ is adjacent to $x-2^{j}$ in T_{i}. Let $z=$ $x-2^{j}$. Clearly, $z_{i}=\bar{x}_{i}=0$ and $i \in H_{n-k}^{0}(z)$. Moreover, $\left|H_{n-k}^{1}(x)\right|>(n-k) / 2+\lambda$ implies $\left|H_{n-k}^{0}(x)\right|<(n-$ $k) / 2-\lambda$. Thus, we have $\left|H_{n-k}^{0}(z)\right|=\left|H_{n-k}^{0}(x)\right|+1 \leqslant$ $((n-k) / 2-\lambda-0.5)+1 \leqslant(n-k) / 2$. This shows that z is in the situation of Case 4 for $H_{i}^{0}(z)=\emptyset$ or Case 5 for $H_{i}^{0}(z) \neq \emptyset$. No matter what the situation does z have, let P be the path that connects z and 0 in T_{i}. Thus, we obtain the unique path $T_{i}[x, 0]$ by concatenating $x \xrightarrow{-2^{j}} z$ and P.

Case 7: $i \in H_{2}^{1}(x)$ and $\left|H_{2}^{1}(x)\right|=2$ (cf. Eq. (6^{\prime})). In this case, we have $n-k=2$ and $\lambda=0.5$. Since $x_{0}=x_{1}=1$ and either $i=1$ or $i=0$, by Eq. (6^{\prime}) we have $j=\max H_{2-i}^{1}=i \oplus 1$. Since $x_{j}=1, x$ is adjacent to $x-2^{j}$ in T_{i}. Let $z=x-2^{j}$. Clearly, $z_{i}=x_{i}=1$ and $i \in H_{n-k}^{1}(z)$. Moreover, $\left|H_{n-k}^{1}(z)\right|=\left|H_{n-k}^{1}(x)\right|-1=$ $1<(n-k) / 2+\lambda$ and $H_{i}^{1}(z)=\emptyset$. This shows that z is in the situation of Case 1 . Let P be the path that connects z and 0 in T_{i}. Thus, we obtain the unique path $T_{i}[x, 0]$ by concatenating $x \xrightarrow{-2^{j}} z$ and P.

As a result, this completes the proof.

Claim 1.2. If x matches one of the conditions in Eqs. (7), (8), (9), (10), (11), (12), then there is a unique path that connects x and 0 in T_{i}.

Proof. Let $j=\operatorname{NEXT}_{x}(i)$ and suppose $x \neq 0$. There are the following scenarios:

Case 1: $i \in H_{n, n-k}^{1}(x)$ and $H_{i}^{1}(x)=\emptyset$ (cf. Eq. (8)). In this case, we have $j=\max H_{n}^{1}(x)=f_{s-1}$. Since $H_{i}^{1}(x)=\emptyset$, a proof similar to that of Case 1 in Claim 1.1 shows that there is a unique path connecting x and 0 in T_{i}.

Case 2: $i \in H_{n, n-k}^{1}(x), H_{i, n-k}^{1}(x)=\emptyset$ and $0<$ $\left|H_{n-k}^{1}(x)\right| \leqslant(n-k) / 2+\lambda$ (cf. Eq. (10)). In this case, since $i \in H_{n, n-k}^{1}(x)$ and $H_{n-k}^{1}(x) \neq \emptyset$, by Eq. (10) we suppose $j=\max H_{n-k}^{1}(x)=f_{p}$ for some $0 \leqslant p<s-1$. A proof similar to that of Case 2 in Claim 1.1 shows that there is a unique path connecting x and 0 in T_{i}.

Case 3: $i \in H_{n, n-k}^{1}(x), H_{i, n-k}^{1}(x)=\emptyset$, and $\left|H_{n-k}^{1}(x)\right|=n-k$ (cf. Eq. (12)). In this case, we have $j=*$. Let $z=x \oplus\left(2^{n-k}-1\right)$ be the node adjacent to x in T_{i}. Since $i \in H_{n, n-k}^{1}(x)$, it implies $z_{i}=x_{i}=1$, and thus $i \in H_{n, n-k}^{1}(z)$. Moreover, $H_{i, n-k}^{1}(z)=H_{i, n-k}^{1}(x)=\emptyset$, and $\left|H_{n-k}^{1}(x)\right|=n-k$ implies $H_{n-k}^{1}(z)=\emptyset$. Thus, $H_{i}^{1}(z)=H_{i, n-k}^{1}(z) \cup$ $H_{n-k}^{1}(z)=\emptyset$. This shows that z is in the situation of Case 1. Let P be the path connecting z and 0 . Therefore, we can find the unique path $T_{i}[x, 0]$ by concatenating $x \xrightarrow{*} z$ and P.

Case 4: $i \in H_{n, n-k}^{1}(x), H_{i, n-k}^{1}(x)=\emptyset$, and $(n-$ $k) / 2+\lambda<\left|H_{n-k}^{1}(x)\right|<n-k$ (cf. Eq. (11)). In this case, since $\left|H_{n-k}^{1}(x)\right|<n-k$, it implies $H_{n-k}^{0}(x) \neq \emptyset$. By Eq. (11), we suppose $j=\max H_{n-k}^{0}(x)=g_{q}$ for some $0 \leqslant q \leqslant t-1$. Since $x_{j}=0, x$ is adjacent to $x+2^{j}$ in T_{i}. Let $y=x+2^{j}$. Clearly $H_{n-k}^{0}(y)=\left\{g_{q-1}, g_{q-2}, \ldots, g_{0}\right\}$. Moreover, $H_{i, n-k}^{1}(y)=H_{i, n-k}^{1}(x)=\emptyset$ and $(n-k) / 2+$
$\lambda<\left|H_{n-k}^{1}(x)\right|<\left|H_{n-k}^{1}(y)\right| \leqslant n-k$. If $\left|H_{n-k}^{1}(y)\right| \neq$ $n-k$, then y is still in the situation of Case 4. By the same argument, we can repeat this process until the path passes through the node $w=x+\sum_{h=0}^{q} 2^{g_{h}}$. Let Q be the path described as follows: $Q: x \xrightarrow{+2^{g_{q}}}$ $\left(x+2^{g_{q}}\right) \xrightarrow{+2^{g_{q}-1}}\left(x+2^{g_{q}}+2^{g_{q-1}}\right) \xrightarrow{+2^{g_{q-2}}} \cdots \xrightarrow{+2^{g_{0}}} w$. Now, it is easy to check that $H_{n}^{0}(w)=\left\{g_{t-1}, g_{t-2}, \ldots, g_{q+1}\right\}$. Thus, $H_{n-k}^{0}(w)=\emptyset$ and $\left|H_{n-k}^{1}(w)\right|=n-k$. Moreover, $i \in H_{n, n-k}^{1}(w)$ and $H_{i, n-k}^{1}(w)=H_{i, n-k}^{1}(x)=\emptyset$. Thus, w is in the situation of Case 3 . Let P be the path connecting w and 0 . Therefore, we can find the unique path $T_{i}[x, 0]$ by concatenating Q and P.

Case 5: $i \in H_{n, n-k}^{1}(x)$ and $H_{i, n-k}^{1}(x) \neq \emptyset$ (cf. Eq. (9)). In this case, since $x_{i}=1$ and $H_{i, n-k}^{1}(x) \neq \emptyset$, by Eq. (9) we suppose $j=\max H_{i, n-k}^{1}(x)=f_{p}$ for some $0 \leqslant p<$ $s-1$. A proof similar to that of Case 2 in Claim 1.1 shows that there is a path Q connecting x and a node $w=x-\sum_{h=r}^{p} 2^{f_{h}}$ such that $H_{i, n-k}^{1}(w)=\emptyset$, where $0 \leqslant r \leqslant p$. If $r=0$, then $H_{i}^{1}(w)=\emptyset$, and thus w is in the situation of Case 1. Otherwise, $H_{n-k}^{1}(x) \neq$ \emptyset, we check the range of $H_{n-k}^{1}(x)$ as follows: If $0<$ $\left|H_{n-k}^{1}(w)\right| \leqslant(n-k) / 2+\lambda$, then w is in the situation of Case 2; If $(n-k) / 2+\lambda<\left|H_{n-k}^{1}(w)\right|<n-k$, then w is in the situation of Case 4 ; If $\left|H_{n-k}^{1}(w)\right|=n-k$, then w is in the situation of Case 3 . No matter what the situation does w have, let P be the path connecting w and 0 . Therefore, we can find the unique path $T_{i}[x, 0]$ by concatenating Q and P.

Case 6: $i \in H_{n, n-k}^{0}(x)$ (cf. Eq. (7)). In this case, we have $j=i$. Since $x_{j}=0, x$ is adjacent to $x+2^{j}$ in T_{i}. Let $z=x+2^{j}$. Clearly, $i \in H_{n, n-k}^{1}(z)$. Thus, z is possible in the situation of any above-mentioned case. Let P be the path that connects z and 0 . Thus, we obtain the unique path $T_{i}[x, 0]$ by concatenating $x \xrightarrow{+2^{j}} z$ and P.

As a result, this completes the proof.

Claim 1.3. If x matches one of the conditions in Eqs. (13), (14), (15), (16), (17), (18), then there is a unique path that connects x and 0 in T_{i}.

Proof. Let $j=\operatorname{NEXT}_{x}(i)$ and suppose $x \neq 0$. There are the following scenarios:

Case 1: $i=*, H_{n, n-k}^{1}(x)=\emptyset$, and $H_{n-k}^{0}(x)=\emptyset$ (cf. Eq. (18)). In this case, we have $j=*$. Let $z=$ $x \oplus\left(2^{n-k}-1\right)$ be the node adjacent to x in T_{i}. Since $H_{n, n-k}^{1}(x)=\emptyset$ and $H_{n-k}^{0}(x)=\emptyset$, it implies $z=0$. In this case, $x \xrightarrow{*} 0$ is the desired path.

Case 2: $i=*, H_{n, n-k}^{1}(x)=\emptyset$, and $0<\left|H_{n-k}^{0}(x)\right| \leqslant$ $(n-k) / 2$ (cf. Eq. (17)). Recall that we regard ' $*$ ' as the smallest element in $H_{n-k}^{0}(x) \cup\{*\}$. In this case, since $H_{n-k}^{0}(x) \neq \emptyset$, by Eq. (17), we suppose $j=\max H_{n-k}^{0}(x)=g_{q}$ for some $0 \leqslant q \leqslant t-1$. A proof similar to that of Case (4) in Claim 1.2 shows that there is a path Q connecting x and a node $w=2^{n-k}-1$ such that $H_{n-k}^{0}(w)=\emptyset$. Now, w is in the situation of Case 1. Therefore, we can find the unique path $T_{i}[x, 0]$
by concatenating Q and $w \xrightarrow{*} 0$.
Case 3: $i=*, H_{n, n-k}^{1}(x)=\emptyset$, and $\left|H_{n-k}^{0}(x)\right|>$ $(n-k) / 2$ (cf. Eq. (16)). In this case, we have $j=*$. Let $z=x \oplus\left(2^{n-k}-1\right)$ be the node adjacent to x in T_{i}. Since $x \neq 0$ and $H_{n, n-k}^{1}(x)=\emptyset$, it implies $\left|H_{n-k}^{1}(x)\right|>0$ (i.e., $\left|H_{n-k}^{0}(x)\right|<n-k$). Also, $n-k>\left|H_{n-k}^{0}(x)\right|>$ $(n-k) / 2$ implies $0<\left|H_{n-k}^{0}(z)\right|<(n-k) / 2$. Moreover, $H_{n, n-k}^{1}(z)=H_{n, n-k}^{1}(x)=\emptyset$. Thus, z is in the situation of Case 2. Let P be the path connecting z and 0 . Therefore, we obtain the unique path $T_{i}[x, 0]$ by concatenating $x \xrightarrow{*} z$ and P.

Case 4: $i=*, H_{n, n-k}^{1}(x) \neq \emptyset$, and $\left|H_{n-k}^{0}(x)\right|<(n-$ $k) / 2-\lambda$ (cf. Eq. (15)). In this case, since $\left|H_{n-k}^{0}(x)\right|<$ $(n-k) / 2-\lambda$, it implies $\left|H_{n-k}^{1}(x)\right|>(n-k) / 2+\lambda \geqslant 1.5$. Note that if $n-k=2$, then $\left|H_{2}^{1}(x)\right|=2$, and thus $x_{0}=$ $x_{1}=1$. Suppose $H_{n, n-k}^{1}(x)=\left\{f_{s-1}, f_{s-2}, \ldots, f_{p}\right\}$ for some $2 \leqslant p \leqslant s-1$. By Eq. (15), we have $j=\max H_{n}^{1}(x)=f_{s-1}$. Since $x_{j}=1, x$ is adjacent to $x-2^{j}$ in T_{i}. Let $y=x-2^{j}$. Clearly, $H_{n, n-k}^{1}(y)=$ $\left\{f_{s-2}, f_{s-3}, \ldots, f_{p}\right\}$ and $\left|H_{n-k}^{0}(y)\right|=\left|H_{n-k}^{0}(x)\right|<(n-$ $k) / 2-\lambda$. If $H_{n, n-k}^{1}(y) \neq \emptyset, y$ is still in the situation of Case 4 . By the same argument, we can repeat this process until the path passes through the node $w=$ $x-\sum_{h=p}^{s-1} 2^{f_{h}}$. Let P be the path described as follows: $P: x \xrightarrow{-2^{f_{s-1}}}\left(x-2^{f_{s-1}}\right) \xrightarrow{-2^{f_{s-2}}}\left(x-2^{f_{s-1}}-2^{f_{s-2}}\right) \xrightarrow{-2^{f_{s-3}}}$ $\cdots \xrightarrow{-2^{f_{p}}} w$. Now, it is easy to check $H_{n, n-k}^{1}(w)=\emptyset$ and $\left|H_{n-k}^{0}(w)\right|=\left|H_{n-k}^{0}(x)\right|<(n-k) / 2-\lambda$. Thus, if $H_{n-k}^{0}(w)=\emptyset$, we have $w=2^{n-k}-1$ and it is in the situation of Case 1. Therefore, we obtain the desired path by concatenating P and $w \xrightarrow{*} 0$. Otherwise, w is in the situation of Case 2. Let Q be the path connecting w and 0 . Therefore, we can find the unique path $T_{i}[x, 0]$ by concatenating P and Q.

Case 5: $i=*, H_{n, n-k}^{1}(x) \neq \emptyset$, and $(n-k) / 2-\lambda \leqslant$ $\left|H_{n-k}^{0}(x)\right| \leqslant(n-k) / 2$ (cf. Eq. (14)). In this case, since $\left|H_{n-k}^{0}(x)\right| \geqslant(n-k) / 2-\lambda \geqslant 0.5$, we have $H_{n-k}^{0}(x) \neq \emptyset$. Note that if $n-k=2$, then $0.5=1-\lambda \leqslant\left|H_{2}^{0}(x)\right| \leqslant$ 1, and thus $x_{0} \oplus x_{1}=1$. By Eq. (14), we suppose $j=\max H_{n-k}^{0}(x)=g_{q}$ for some $0 \leqslant q \leqslant t-1$. A proof similar to that of Case (4) in Claim 1.2 shows that there is a path Q connecting x and a node w such that $\left|H_{n-k}^{0}(w)\right|<(n-k) / 2-\lambda$. Now, w is in the situation of Case 4 . Let P be the path connecting w and 0 . Therefore, we can find the unique path $T_{i}[x, 0]$ by concatenating Q and P.

Case 6: $i=*, H_{n, n-k}^{1}(x) \neq \emptyset$, and $\left|H_{n-k}^{0}(x)\right|>(n-$ $k) / 2$ (cf. Eq. (13)). In this case, we have $j=*$. Let $z=x \oplus\left(2^{n-k}-1\right)$ be the node adjacent to x in T_{i}. Since $\left|H_{n-k}^{0}(x)\right|>(n-k) / 2$, it implies $\left|H_{n-k}^{0}(z)\right|<$ $(n-k) / 2$. Since $H_{n, n-k}^{1}(z)=H_{n, n-k}^{1}(x) \neq \emptyset, z$ is in the situation of Case 4 or Case 5 . No matter what the situation does z have, let P be the path connecting z and 0 . Therefore, we obtain the unique path $T_{i}[x, 0]$ by concatenating $x \xrightarrow{*} z$ and P.
As a result, this completes the proof.

APPENDIX B

Proofs of Claims in Theorem 2.

The following lemmas shows the independency of spanning trees. For convenience, if P is a path and $u, v \in V(P)$, we use $P(u, v)$ to denote the subpath of P from u to v. Also, we write $P(u, v)_{i}=b$, where $0 \leqslant i \leqslant n-1$ and $b \in\{0,1\}$, to mean that $x_{i}=b$ for every node $x=x_{n-1} x_{n-2} \cdots x_{0}$ in $P(u, v)$.

Claim 2.1. If $i, j \in H_{n-k}^{1}$, then $P \| Q$.
Proof. Without loss of generality, we suppose $n-k>$ $i>j \geqslant 0$. Note that $x_{i}=x_{j}=1$. There are three cases as follows.

Case 1: $\left|H_{n-k}^{1}(x)\right| \leqslant(n-k) / 2+\lambda$. From the paths constructed in Claim 1.1 (cf. Eqs. (4) and (5)), we know that P starts with an edge labeled by $-2^{i^{\prime}}$, where $i^{\prime}=\operatorname{NEXT}_{x}(i)$, and ends with an edge labeled by -2^{i}. Since $x_{i^{\prime}}=1$ and it has been changed to 0 when P passes through the first edge, we have $P\left(x-2^{i^{\prime}}, 2^{i}\right)_{i^{\prime}}=0$. Also, since x_{i} remains unchanged until P passes through the last edge, we have $P(x-$ $\left.2^{i^{\prime}}, 2^{i}\right)_{i}=1$. Similarly, Q starts with an edge labeled by $-2^{j^{\prime}}$, where $j^{\prime}=\operatorname{NEXT}_{x}(j)$, and ends with an edge labeled by -2^{j}. Clearly, the path $Q\left(x-2^{j^{\prime}}, 2^{j}\right)$ contains an edge with label -2^{i}, denoted by $w \xrightarrow{-2^{i}} w^{\prime}$. Since $x_{i^{\prime}}$ alters after the change of x_{i} in Q, we have $Q\left(x-2^{j^{\prime}}, w\right)_{i^{\prime}}=1$ and $Q\left(w^{\prime}, 2^{j}\right)_{i}=0$. As a result, every node of $P\left(x-2^{i^{\prime}}, 2^{i}\right)$ has a bit different from nodes of $Q\left(x-2^{j^{\prime}}, w\right) \cup Q\left(w^{\prime}, 2^{j}\right)$.

Case 2: $\left|H_{n-k}^{1}(x)\right|>(n-k) / 2+\lambda($ for $n-k>2)$. In this case, we have $\operatorname{NEXT}_{x}(i)=i$ and $\operatorname{NEXT}_{x}(j)=j$. Thus, P (respectively, Q) has the label -2^{i} (respectively, -2^{j}) in its first edge and last edge. Since $n-k>2$, we have $\left|H_{n-k}^{1}(x)\right| \geqslant 3$, and there is a position $\ell \in H_{n-k}^{1}(x) \backslash\{i, j\}$ such that $x_{\ell}=1$. From the paths constructed in Claim 1.1 (cf. Eq. (6)), we know that P and Q must have passed through an edge with label $*$, denoted by $w_{P} \xrightarrow{*} w_{P}^{\prime}$ and $w_{Q} \xrightarrow{*} w_{Q}^{\prime}$, respectively. Since x_{i} has been changed to 0 when P passes through the first edge, we have $P\left(x-2^{i}, w_{P}\right)_{i}=0$ and $P\left(w_{P}^{\prime}, 2^{i}\right)_{i}=1$. Moreover, since $P\left(x-2^{i}, w_{P}\right)$ never changes a bit from 1 to 0 after the change of x_{i}, it follows that $P\left(x-2^{i}, w_{P}\right)_{\ell}=1$ and $P\left(w_{P}^{\prime}, 2^{i}\right)_{\ell}=0$. On the other hand, since $Q\left(x-2^{j}, w_{Q}\right)$ does not contain an edge with label -2^{i}, we have $Q\left(x-2^{j}, w_{Q}\right)_{i}=1$ and $Q\left(w_{Q}^{\prime}, 2^{j}\right)_{i}=0$. Again, since $Q\left(x-2^{j}, w_{Q}\right)$ never changes a bit from 1 to 0 after the change of x_{j}, it follows that $Q\left(x-2^{j}, w_{Q}\right)_{\ell}=1$ and $Q\left(w_{Q}^{\prime}, 2^{j}\right)_{\ell}=0$. As a result, every node of $P\left(x-2^{i}, w_{P}\right) \cup P\left(w_{P}^{\prime}, 2^{i}\right)$ has a bit different from nodes of $Q\left(x-2^{j}, w_{Q}\right) \cup Q\left(w_{Q}^{\prime}, 2^{j}\right)$.

Case 3: $\left|H_{2}^{1}(x)\right|=2$ (for $n-k=2$). From the paths constructed in Claim 1.1 (cf. Eq. (6')), we have $\left|H_{2}^{1}(x)\right|=2$. Since $i>j$, we have $i=1$ and $j=0$. Let $i^{\prime}=\max H_{2-i}^{1}(x)=0$ and $j^{\prime}=\max H_{2-j}^{1}(x)=1$. The proof is similar to Case 1.

Claim 2.2. If $i, j \in H_{n-k}^{0}$, then $P \| Q$.
Proof. Without loss of generality, we suppose $n-k>$ $i>j \geqslant 0$. Note that $x_{i}=x_{j}=0$. There are two cases as follows.

Case 1: $\left|H_{n-k}^{0}(x)\right| \leqslant(n-k) / 2$. From the paths constructed in Claim 1.1 (cf. Eqs. (1) and (2)), P starts with an edge labeled by $+2^{i^{\prime}}$, where $i^{\prime}=\operatorname{NEXT}_{x}(i)$, and ends with an edge labeled by -2^{i}. Similarly, Q starts with an edge labeled by $+2^{j^{\prime}}$, where $j^{\prime}=$ $\operatorname{NEXT}_{x}(j)$, and ends with an edge labeled by -2^{j}. Moreover, P and Q can be described as follows: $P: x \xrightarrow{+2^{i^{\prime}}}\left(x+2^{i^{\prime}}\right) \rightarrow \cdots \rightarrow u \xrightarrow{+2^{j}} u^{\prime} \xrightarrow{+2^{j^{\prime}}} u^{\prime \prime} \rightarrow \cdots \rightarrow w_{P} \xrightarrow{*}$ $w_{P}^{\prime} \rightarrow \cdots \rightarrow\left(2^{i}\right) \xrightarrow{-2^{i}} 0$ and $Q: x \xrightarrow{+2^{j^{\prime}}}\left(x+2^{j^{\prime}}\right) \rightarrow \cdots \rightarrow$ $w_{Q} \xrightarrow{*} w_{Q}^{\prime} \rightarrow \cdots \rightarrow v \xrightarrow{-2^{i}} v^{\prime} \xrightarrow{-2^{i}} v^{\prime \prime} \rightarrow \cdots \rightarrow\left(2^{j}\right) \xrightarrow{-2^{j}} 0$. Note that $x_{i^{\prime}}=0$ and it is possible $i^{\prime}=j$ or $j^{\prime}=*$ (we ignore the relevant subpaths in this case). If $j^{\prime} \neq *_{\text {, }}$ then $x_{j^{\prime}}=0$. By carefully analyzing the alteration of bits, the bits in positions i, i^{\prime}, j and j^{\prime} for nodes in P are as follows: $P\left(x+2^{i^{\prime}}, u\right)_{i}=P\left(u^{\prime}, u^{\prime}\right)_{i}=$ $P\left(u^{\prime \prime}, w_{P}\right)_{i}=P\left(w_{P}^{\prime}, 2^{i}\right)_{i^{\prime}}=P\left(x+2^{i^{\prime}}, u\right)_{j}=P\left(w_{P}^{\prime}, 2^{i}\right)_{j}=$ $P\left(x+2^{i^{\prime}}, u\right)_{j^{\prime}}=P\left(u^{\prime}, u^{\prime}\right)_{j^{\prime}}=P\left(w_{P}^{\prime}, 2^{i}\right)_{j^{\prime}}=0$ and $P\left(w_{P}^{\prime}, 2^{i}\right)_{i}=P\left(x+2^{i^{\prime}}, u\right)_{i^{\prime}}=P\left(u^{\prime}, u^{\prime}\right)_{i^{\prime}}=P\left(u^{\prime \prime}, w_{P}\right)_{i^{\prime}}=$ $P\left(u^{\prime}, u^{\prime}\right)_{j}=P\left(u^{\prime \prime}, w_{P}\right)_{j}=P\left(u^{\prime \prime}, w_{P}\right)_{j^{\prime}}=1$.

Similarly, the bits in positions i, i^{\prime}, j and j^{\prime} for nodes in Q are as follows: $Q\left(x+2^{j^{\prime}}, w_{Q}\right)_{i}=Q\left(v^{\prime}, v^{\prime}\right)_{i}=$ $Q\left(v^{\prime \prime}, 2^{j}\right)_{i}=Q\left(x+2^{j^{\prime}}, w_{Q}\right)_{i^{\prime}}=Q\left(x+2^{j^{\prime}}, w_{Q}\right)_{j}=$ $Q\left(w_{Q}^{\prime}, v\right)_{j^{\prime}}=Q\left(v^{\prime}, v^{\prime}\right)_{j^{\prime}}=Q\left(v^{\prime \prime}, 2^{j}\right)_{j^{\prime}}=0$ and $Q\left(w_{Q}^{\prime}, v\right)_{i}=Q\left(w_{Q}^{\prime}, v\right)_{i^{\prime}}=Q\left(v^{\prime}, v^{\prime}\right)_{i^{\prime}}=Q\left(v^{\prime \prime}, 2^{j}\right)_{i^{\prime}}=$ $Q\left(w_{Q}^{\prime}, v\right)_{j}=Q\left(v^{\prime}, v^{\prime}\right)_{j}=Q\left(v^{\prime \prime}, 2^{j}\right)_{j}=Q\left(x+2^{j^{\prime}}, w_{Q}\right)_{j^{\prime}}=$ 1.

We observe that only $P\left(u^{\prime}, u^{\prime}\right)$ and $Q\left(v^{\prime}, v^{\prime}\right)$ have the same setting in these bits. Since $\left|H_{n-k}^{0}(x)\right| \leqslant(n-k) / 2$, it implies $\left|H_{n-k}^{1}(x)\right| \geqslant(n-k) / 2$, and thus there is a position $\ell \in H_{n-k}^{1}(x)$ such that $x_{\ell}=1$. Since x_{ℓ} remains unchanged until P passes through the edge with label $*$, we have $P\left(u^{\prime}, u^{\prime}\right)_{\ell}=1$. By contrast, x_{ℓ} has been changed to 0 when Q passes through the edge with label $*$, we have $Q\left(v^{\prime}, v^{\prime}\right)_{\ell}=0$. This shows that $P\left(x+2^{i^{\prime}}, 2^{i}\right) \cap Q\left(x+2^{j^{\prime}}, 2^{j}\right)=\emptyset$.

Case 2: $\left|H_{n-k}^{0}(x)\right|>(n-k) / 2$. From the paths constructed in Claim 1.1 (cf. Eq. (3)), we have $\operatorname{NEXT}_{x}(i)=$ i and $\operatorname{NEXT}_{x}(j)=j$. Thus, P (respectively, Q) has the label $+2^{i}$ (respectively, $+2^{j}$) in its first edge and the label -2^{i} (respectively, -2^{j}) in its last edge. Since x_{i} has been changed to 1 when P passes through the first edge, we have $P\left(x+2^{i}, 2^{i}\right)_{i}=1$. On the other hand, since $Q\left(x+2^{j}, 2^{j}\right)$ never changes a bit from 0 to 1 after the change of x_{j}, we have $Q\left(x+2^{j}, 2^{j}\right)_{i}=0$. Thus, $P\left(x+2^{i}, 2^{i}\right) \cap Q\left(x+2^{j}, 2^{j}\right)=\emptyset$.

Claim 2.3. If $i, j \in H_{n, n-k^{\prime}}^{1}$ then $P \| Q$.
Proof. Without loss of generality, we suppose $n>i>$ $j \geqslant n-k$. Since $i, j \in H_{n, n-k}^{1}(x)$, we have $H_{i, n-k}^{1}(x) \neq$ \emptyset. From the paths constructed in Claim 1.2 (cf. Eq. (9)), we know that P starts with an edge labeled by $-2^{i^{\prime}}$,
where $i^{\prime}=\max H_{i}^{1}(x)$, and ends with an edge labeled by -2^{i}. Note that it is possible $i^{\prime}=j$. Since $x_{i^{\prime}}=1$ and it has been changed to 0 when P passes through the first edge, we have $P\left(x-2^{i^{\prime}}, 2^{i}\right)_{i^{\prime}}=0$. Also, since x_{i} remains unchanged until P passes through the last edge, we have $P\left(x-2^{i^{\prime}}, 2^{i}\right)_{i}=1$. There are two cases as follows.

Case 1: $H_{j, n-k}^{1}(x) \neq \emptyset$ or $\left|H_{n-k}^{1}(x)\right| \leqslant(n-k) / 2+\lambda$. From the paths constructed in Claim 1.2 (cf. Eqs. (8), (9) and (10)), Q starts with an edge labeled by $-2^{j^{\prime}}$, where $j^{\prime}=\operatorname{NEXT}_{x}(j)$, and ends with an edge labeled by -2^{j}. Clearly, the path $Q\left(x-2^{j^{\prime}}, 2^{j}\right)$ contains an edge with label -2^{i}, denoted by $w \xrightarrow{-2^{i}} w^{\prime}$. Since $x_{i^{\prime}}$ alters after the change of x_{i} in Q, we have $Q(x-$ $\left.2^{j^{\prime}}, w\right)_{i^{\prime}}=1$ and $Q\left(w^{\prime}, 2^{j}\right)_{i}=0$. As a result, every node of $P\left(x-2^{i^{\prime}}, 2^{i}\right)$ has a bit different from nodes of $Q\left(x-2^{j^{\prime}}, w\right) \cup Q\left(w^{\prime}, 2^{j}\right)$.

Case 2: $H_{j, n-k}^{1}(x)=\emptyset$ and $(n-k) / 2+\lambda<$ $\left|H_{n-k}^{1}(x)\right| \leqslant n-k$. Let $j^{\prime}=\operatorname{NEXT}_{x}(j)$. From the paths constructed in Claim 1.2 (cf. Eqs. (11) and (12)), Q starts with an edge labeled by $+2^{j^{\prime}}$ or $*$, and ends with an edge labeled by -2^{j}. If $j^{\prime} \neq *$, then $x_{j^{\prime}}=0$. It follows that Q must have passed through an edge labeled by $*$. Since Q contains an edge with label -2^{i}, denoted by $w \xrightarrow{-2^{i}} w^{\prime}$, an argument similar to Case 1 shows that $Q\left(x+2^{j^{\prime}}, w\right)_{i^{\prime}}=1$ and $Q\left(w^{\prime}, 2^{j}\right)_{i}=0$. Thus, there is a different bit between nodes of $P\left(x-2^{i^{\prime}}, 2^{i}\right)$ and $Q\left(x+2^{j^{\prime}}, w\right) \cup Q\left(w^{\prime}, 2^{j}\right)$.

Claim 2.4. If $i, j \in H_{n, n-k^{\prime}}^{0}$, then $P \| Q$.
Proof. Note that $x_{i}=x_{j}=0$. From the paths constructed in Claim 1.2 (cf. Eq. (7)), we have $\operatorname{NEXT}_{x}(i)=$ i and $\operatorname{NEXT}_{x}(j)=j$. Thus, P (respectively, Q) has the label $+2^{i}$ (respectively, $+2^{j}$) in its first edge and the label -2^{i} (respectively, -2^{j}) in its last edge. Since x_{i} (respectively, x_{j}) has been changed to 1 when P (respectively, Q) passes through the first edge, we have $P\left(x+2^{i}, 2^{i}\right)_{i}=Q\left(x+2^{j}, 2^{j}\right)_{j}=1$. Also, since P (respectively, Q) does not contain an edge with label $+2^{j}$ (respectively, $+2^{i}$), we have $P\left(x+2^{i}, 2^{i}\right)_{j}=$ $Q\left(x+2^{j}, 2^{j}\right)_{i}=0$. Thus, $P\left(x+2^{i}, 2^{i}\right) \cap Q\left(x+2^{j}, 2^{j}\right)=\emptyset$.

Claim 2.5. If $i \in H_{n-k}^{1}$ and $j \in H_{n-k}^{0}$, then $P \| Q$.
Proof. Note that $x_{i}=1$ and $x_{j}=0$. There are four cases as follows.

Case 1: $\left|H_{n-k}^{1}(x)\right|<(n-k) / 2$. This implies $\left|H_{n-k}^{0}(x)\right|>(n-k) / 2$. From the paths constructed in Claim 1.1 (cf. Eqs. (4) and (5)), P starts with an edge labeled by $-2^{i^{\prime}}$, where $i^{\prime}=\operatorname{NEXT}_{x}(i)$, and ends with an edge labeled by -2^{i}. By contrast, from the paths constructed in Claim 1.1 (cf. Eq. (3)), Q starts with an edge labeled by $+2^{j}$ because $\operatorname{NEXT}_{x}(j)=j$, and ends with an edge labeled by -2^{j}. Since $P\left(x-2^{i^{\prime}}, 2^{i}\right)$ never changes a bit from 0 to 1 , we have $P\left(x-2^{i^{\prime}}, 2^{i}\right)_{j}=0$.

On the other hand, since x_{j} has been changed to 1 when Q passes through the first edge and then keeps unchanged until Q passes through the last edge, we have $Q\left(x+2^{j}, 2^{j}\right)_{j}=1$. Thus, $P\left(x-2^{i^{\prime}}, 2^{i}\right) \cap Q(x+$ $\left.2^{j}, 2^{j}\right)=\emptyset$.

Case 2: $(n-k) / 2 \leqslant\left|H_{n-k}^{1}(x)\right| \leqslant(n-k) / 2+\lambda$. This implies $(n-k) / 2-\lambda \leqslant\left|H_{n-k}^{0}(x)\right| \leqslant(n-k) / 2$. In this case, P is the same as that described in Case 1. Let $j^{\prime}=$ $\operatorname{NEXT}_{x}(j)$. From the paths constructed in Claim 1.1 (cf. Eqs. (1) and (2)), Q starts with an edge labeled by $+2^{j^{\prime}}$ or $*$, and ends with an edge labeled by -2^{j}. If $j^{\prime} \neq$ $*$, then $x_{j^{\prime}}=0$. It follows that Q must have passed through an edge with label $*$, denoted by $w_{Q} \xrightarrow{*} w_{Q}^{\prime}$. Since $P\left(x-2^{i^{\prime}}, 2^{i}\right)$ never changes a bit from 0 to 1 , we have $P\left(x-2^{i^{\prime}}, 2^{i}\right)_{j}=0$ and $P\left(x-2^{i^{\prime}}, 2^{i}\right)_{j^{\prime}}=0$ for $j^{\prime} \neq$ *. On the other hand, since $x_{j^{\prime}}$ has been changed to 1 when Q passes through the first edge, we have $Q(x+$ $\left.2^{j^{\prime}}, w_{Q}\right)_{j^{\prime}}=1$ and $Q\left(w_{Q}^{\prime}, 2^{j}\right)_{j^{\prime}}=0$. Moreover, since $Q\left(x+2^{j^{\prime}}, w_{Q}\right)$ does not contain an edge with label $+2^{j}$, we have $Q\left(x+2^{j^{\prime}}, w_{Q}\right)_{j}=0$ and $Q\left(w_{Q}^{\prime}, 2^{j}\right)_{j}=1$. Thus, there is a different bit between nodes of $P\left(x-2^{i^{i}}, 2^{i}\right)$ and $Q\left(x+2^{j^{\prime}}, w_{Q}\right) \cup Q\left(w_{Q}^{\prime}, 2^{j}\right)$.

Case 3: $\left|H_{n-k}^{1}(x)\right|>(n-k) / 2+\lambda$ (for $n-k>$ 2). This implies $\left|H_{n-k}^{0}(x)\right|<(n-k) / 2-\lambda$. Since $n-k>2$, we have $\left|H_{n-k}^{1}(x)\right| \geqslant 3$ and there is a position $\ell \in H_{n-k}^{1}(x) \backslash\{i\}$ such that $x_{\ell}=1$. From the paths constructed in Claim 1.1 (cf. Eq. (6)), we have $\operatorname{NEXT}_{x}(i)=i$ and P has the label -2^{i} in its first edge and last edge. In this case, Q is the same as that described in Case 2. Note that both P and Q must have passed through an edge with label $*$, denoted by $w_{P} \xrightarrow{*} w_{P}^{\prime}$ and $w_{Q} \xrightarrow{*} w_{Q}^{\prime}$ respectively. Since x_{i} has been changed to 0 when P passes through the first edge, we have $P\left(x-2^{i}, w_{P}\right)_{i}=0$ and $P\left(w_{P}^{\prime}, 2^{i}\right)_{i}=1$. Also, since $P\left(x-2^{i}, w_{P}\right)$ never changes a bit from 1 to 0 after the change of x_{i}, it follows that $P\left(x-2^{i}, w_{P}\right)_{\ell}=1$ and $P\left(w_{P}^{\prime}, 2^{i}\right)_{\ell}=0$. On the other hand, since $Q\left(x+2^{j^{\prime}}, w_{Q}\right)$ never changes a bit from 1 to 0 , we have $Q\left(x+2^{j^{\prime}}, w_{Q}\right)_{i}=Q\left(x+2^{j^{\prime}}, w_{Q}\right)_{\ell}=1$ and $Q\left(w_{Q}^{\prime}, 2^{j}\right)_{i}=Q\left(w_{Q}^{\prime}, 2^{j}\right)_{\ell}=0$. Thus, there is a different bit between nodes of $P\left(x-2^{i}, w_{P}\right) \cup P\left(w_{P}^{\prime}, 2^{i}\right)$ and $Q\left(x+2^{j^{\prime}}, w_{Q}\right) \cup Q\left(w_{Q}^{\prime}, 2^{j}\right)$.

Case $4:\left|H_{2}^{1}(x)\right|=2$ (for $n-k=2$). This case is impossible because $\left|H_{n-k}^{1}(x)\right|=2$ and $j \in H_{n-k}^{0}(x)$.

Claim 2.6. If $i \in H_{n-k}^{1}$ and $j \in H_{n, n-k}^{1}$, then $P \| Q$.
Proof. Note that $x_{i}=x_{j}=1$. There are two cases as follows.

Case 1: $H_{j, n-k}^{1}(x) \neq \emptyset$ or $\left|H_{n-k}^{1}(x)\right| \leqslant(n-k) / 2+\lambda$. From the paths constructed in Claim 1.1 (cf. Eqs. (4) and (5)), P starts with an edge labeled by $-2^{i^{\prime}}$, where $i^{\prime}=\operatorname{NEXT}_{x}(i)$, and ends with an edge labeled by -2^{i}. By contrast, from the paths constructed in Claim 1.2 (cf. Eqs. (8), (9) and (10)), Q starts with an edge labeled by $-2^{j^{\prime}}$, where $j^{\prime}=\operatorname{NEXT}_{x}(j)$, and ends with an edge labeled by -2^{j}. Note that it is possible $i^{\prime}=j$ or $j^{\prime}=i$.

If $j^{\prime} \neq i$, then $Q\left(x-2^{j^{\prime}}, 2^{j}\right)$ contains an edge with label -2^{i}, denoted by $w \xrightarrow{-2^{i}} w^{\prime}$. Since $x_{i^{\prime}}$ alters after the change of x_{i} in Q, we have $Q\left(x-2^{j^{\prime}}, w\right)_{i^{\prime}}=1$ and $Q\left(w^{\prime}, 2^{j}\right)_{i}=0$. On the other hand, since $x_{i^{\prime}}$ has been changed to 0 when P passes through the first edge, we have $P\left(x-2^{i^{\prime}}, 2^{i}\right)_{i^{\prime}}=0$. Also, since x_{i} remains unchanged until P passes through the last edge, we have $P\left(x-2^{i^{\prime}}, 2^{i}\right)_{i}=1$. This shows that every node of $P\left(x-2^{i^{\prime}}, 2^{i}\right)$ has a bit different from nodes of $Q(x-$ $\left.2^{j^{\prime}}, w\right) \cup Q\left(w^{\prime}, 2^{j}\right)$.

Case 2: $H_{j, n-k}^{1}(x)=\emptyset$ and $(n-k) / 2+\lambda<$ $\left|H_{n-k}^{1}(x)\right| \leqslant n-k$. Since $\left|H_{n-k}^{1}(x)\right|>(n-k) / 2+\lambda$, there is a position $\ell \in H_{n-k}^{1}(x) \backslash\{i\}$ such that $x_{\ell}=1$. Let $j^{\prime}=\operatorname{NEXT}_{x}(j)$. From the paths constructed in Claim 1.2 (cf. Eqs. (11) and (12)), Q starts with an edge labeled by $+2^{j^{\prime}}$ or $*$, and ends with an edge labeled by -2^{j}. If $j^{\prime} \neq *$, then $j^{\prime}=\max H_{n-k}^{0}(x)$ and Q must have passed through an edge with label $*$, denoted by $w_{Q} \xrightarrow{*} w_{Q}^{\prime}$. For $n-k>2$, from the paths constructed in Claim 1.1 (cf. Eq. (6)), we have $\operatorname{NEXT}_{x}(i)=i$ and P has the label -2^{i} in its first edge and last edge. Note that P must have passed through an edge with label $*$, denoted by $w_{P} \xrightarrow{*} w_{P}^{\prime}$. Since x_{i} has been changed to 0 when P passes through the first edge, we have $P\left(x-2^{i}, w_{P}\right)_{i}=0$ and $P\left(w_{P}^{\prime}, 2^{i}\right)_{i}=1$. Also, since $P\left(x-2^{i}, w_{P}\right)$ never changes a bit from 1 to 0 except the first edge, we have $P\left(x-2^{i}, w_{P}\right)_{\ell}=$ 1 and $P\left(w_{P}^{\prime}, 2^{i}\right)_{\ell}=0$. On the other hand, since $Q\left(x+2^{j^{\prime}}, w_{Q}\right)$ never changes a bit from 1 to 0 , we have $Q\left(x+2^{j^{\prime}}, w_{Q}\right)_{i}=Q\left(x+2^{j^{\prime}}, w_{Q}\right)_{\ell}=1$ and $Q\left(w_{Q}^{\prime}, 2^{j}\right)_{i}=$ $Q\left(w_{Q}^{\prime}, 2^{j}\right)_{\ell}=0$. This shows that there is a different bit between nodes of $P\left(x-2^{i}, w_{P}\right) \cup P\left(w_{P}^{\prime}, 2^{i}\right)$ and $Q\left(x+2^{j^{\prime}}, w_{Q}\right) \cup Q\left(w_{Q}^{\prime}, 2^{j}\right)$.

For $n-k=2$, from the paths constructed in Claim 1.1 (cf. Eq. (6^{\prime})), P starts with an edge labeled by $-2^{i^{\prime}}$, where $i^{\prime}=\max H_{2-i}^{1}(x)$, and ends with an edge labeled by -2^{i}. Since $x_{i^{\prime}}$ has been changed to 0 when P passes through the first edge, we have $P\left(x-2^{i^{\prime}}, 2^{i}\right)_{i^{\prime}}=0$. Also, since x_{i} remains unchanged until P passes through the last edge, we have $P\left(x-2^{i^{\prime}}, 2^{i}\right)_{i}=1$. On the other hand, since $Q\left(x+2^{j^{\prime}}, w_{Q}\right)$ never changes a bit from 1 to 0 , we have $Q\left(x+2^{j^{\prime}}, w_{Q}\right)_{i}=Q\left(x+2^{j^{\prime}}, w_{Q}\right)_{i^{\prime}}=1$ and $Q\left(w_{Q}^{\prime}, 2^{j}\right)_{i}=Q\left(w_{Q}^{\prime}, 2^{j}\right)_{i^{\prime}}=0$. This shows that there is a different bit between nodes of $P\left(x-2^{i^{i}}, 2^{i}\right)$ and $Q\left(x+2^{j^{\prime}}, w_{Q}\right) \cup Q\left(w_{Q}^{\prime}, 2^{j}\right)$.

Claim 2.7. If $i \in H_{n-k}^{1}$ and $j \in H_{n, n-k}^{0}$, then $P \| Q$.
Proof. Note that $x_{i}=1$ and $x_{j}=0$. Let w be the node adjacent to x in P. From the paths constructed in Claim 1.1 (cf. Eqs. (4), (5), (6) and (6^{\prime})), we know that P ends with an edge labeled by -2^{i} and never changes a bit in $H_{n, n-k}^{0}(x)$ from 0 to 1 . Since $j \in H_{n, n-k}^{0}$, we have $P\left(w, 2^{i}\right)_{j}=0$. On the other hand, from the paths constructed in Claim 1.2 (cf. Eq. (7)), we have $\operatorname{NEXT}_{x}(j)=j$. Thus, Q has the label $+2^{j}$ in its
first edge and the label -2^{j} in its last edge. Since x_{j} has been changed to 1 when Q passes through the first edge and then keeps unchanged until Q passes through the last edge, we have $Q\left(x+2^{j}, 2^{j}\right)_{j}=1$. Thus $P\left(w, 2^{i}\right) \cap Q\left(x+2^{j}, 2^{j}\right)=\emptyset$.

Claim 2.8. If $i \in H_{n-k}^{0}$ and $j \in H_{n, n-k}^{1}$, then $P \| Q$.
Proof. Note that $x_{i}=0$ and $x_{j}=1$. There are two cases as follows.

Case 1: $H_{j, n-k}^{1}(x) \neq \emptyset$ or $\left|H_{n-k}^{1}(x)\right| \leqslant(n-k) / 2+\lambda$. This implies $\left|H_{n-k}^{0}(x)\right| \geqslant(n-k) / 2-\lambda$. In this case, Q is the same as that in Case 1 of Claim 2.6. We first consider $(n-k) / 2 \geqslant\left|H_{n-k}^{0}(x)\right| \geqslant(n-k) / 2-\lambda$. Let $i^{\prime}=\operatorname{NEXT}_{x}(i)$. From the paths constructed in Claim 1.1 (cf. Eqs. (1) and (2)), P starts with an edge labeled by $+2^{i^{\prime}}$ or $*$, and ends with an edge labeled by -2^{i}. If $i^{\prime} \neq *$, then $x_{i^{\prime}}=0$ and P must have passed through an edge with label $*$, denoted by $w \xrightarrow{*} w^{\prime}$. Since $x_{i^{\prime}}$ has been changed to 1 when P passes through the first edge, we have $P\left(x+2^{i^{\prime}}, w\right)_{i^{\prime}}=1$ and $P\left(w^{\prime}, 2^{i}\right)_{i^{\prime}}=0$. Also, since x_{i} remains unchanged until P passes through the edge $w \xrightarrow{*} w^{\prime}$, we have $P\left(x-2^{i}, w\right)_{i}=0$ and $P\left(w^{\prime}, 2^{i}\right)_{i}=1$. On the other hand, since Q never changes a bit from 0 to 1 , we have $Q\left(x-2^{j^{\prime}}, 2^{j}\right)_{i}=Q\left(x-2^{j^{\prime}}, 2^{j}\right)_{i^{\prime}}=0$. Thus, every node of $P\left(x+2^{i}, w\right) \cup P\left(w^{\prime}, 2^{i}\right)$ has a bit different from nodes of $Q\left(x-2^{j^{\prime}}, 2^{j}\right)$.

Next, we consider $\left|H_{n-k}^{0}(x)\right|>(n-k) / 2$. From the paths constructed in Claim 1.1 (cf. Eq. (3)), we have $\operatorname{NEXT}_{x}(i)=i$. Thus, P has the label $+2^{i}$ in its first edge and the label -2^{i} in its last edge. Since x_{i} has been changed to 1 when P passes through the first edge and then keeps unchanged until P passes through the last edge, we have $P\left(x+2^{i}, 2^{i}\right)_{i}=1$. On the other hand, since Q never changes a bit from 0 to 1 , we have $Q\left(x-2^{j^{\prime}}, 2^{j}\right)_{i}=0$. Thus $P\left(x+2^{i}, 2^{i}\right) \cap Q\left(x-2^{j^{\prime}}, 2^{j}\right)=\emptyset$.

Case 2: $H_{j, n-k}^{1}(x)=\emptyset$ and $(n-k) / 2+\lambda<$ $\left|H_{n-k}^{1}(x)\right| \leqslant n-k$. Since $\left|H_{n-k}^{1}(x)\right|>(n-k) / 2+\lambda$, it implies that $\left|H_{n-k}^{0}(x)\right|<(n-k) / 2-\lambda$ and there is a position $\ell \in H_{n-k}^{1}(x)$ such that $x_{\ell}=1$. Let $i^{\prime}=\operatorname{NEXT}_{x}(i)$. From the paths constructed in Claim 1.1 (cf. Eqs. (1) and (2)), P starts with an edge labeled by $+2^{i^{\prime}}$ or $*$, and ends with an edge labeled by -2^{i}. If $i^{\prime} \neq *$, then $x_{i^{\prime}}=0$ and P must have passed through an edge with label $*$, denoted by $w_{P} \xrightarrow{*} w_{P}^{\prime}$. Since $\left|H_{n-k}^{0}(x)\right| \leqslant(n-k) / 2$, the path Q is the same as that in Case 2 of Claim 2.6. Let $j^{\prime}=\operatorname{NEXT}_{x}(j)$. That is, Q starts with an edge labeled by $+2^{j^{\prime}}$ or $*$, and ends with an edge labeled by -2^{j}. If $j^{\prime} \neq *^{\prime}$, then $j^{\prime}=\max H_{n-k}^{0}(x) \geqslant i$ and Q must have passed through an edge with label $*$, denoted by $w_{Q} \xrightarrow{*} w_{Q}^{\prime}$. Furthermore, if $j^{\prime}>i$, the path $P\left(w_{P}^{\prime}, 2^{i}\right)$ contains an edge with label $-2^{j^{\prime}}$, denoted by $u \xrightarrow{-2^{j^{\prime}}} u^{\prime}$, and the path $Q\left(x+2^{j^{\prime}}, w_{Q}\right)$ contains an edge with label $+2^{i}$, denoted by $v \xrightarrow{+2^{i}} v^{\prime}$. It is clear that the bits in positions i, j^{\prime} and ℓ for nodes in P are as follows:
$P\left(x+2^{i^{\prime}}, w_{P}\right)_{i}=P\left(x+2^{i^{\prime}}, w_{P}\right)_{j^{\prime}}=P\left(u^{\prime}, 2^{i}\right)_{j^{\prime}}=$ $P\left(w_{P}^{\prime}, u\right)_{\ell}=P\left(u^{\prime}, 2^{i}\right)_{\ell}=0$ and $P\left(w_{P}^{\prime}, u\right)_{i}=P\left(u^{\prime}, 2^{i}\right)_{i}=$ $P\left(w_{P}^{\prime}, u\right)_{j^{\prime}}=P\left(x+2^{i^{\prime}}, w_{P}\right)_{\ell}=1$. On the other hand, the bits in positions i, j^{\prime} and ℓ for nodes in Q are as follows: $Q\left(x+2^{j^{\prime}}, v\right)_{i}=Q\left(w_{Q}^{\prime}, 2^{j}\right)_{i}=Q\left(w_{Q}^{\prime}, 2^{j}\right)_{j^{\prime}}=$ $Q\left(w_{Q}^{\prime}, 2^{j}\right)_{\ell}=0$ and $Q\left(v^{\prime}, w_{Q}\right)_{i}=Q\left(x+2^{j^{\prime}}, v\right)_{j^{\prime}}=$ $Q\left(v^{\prime}, w_{Q}\right)_{j^{\prime}}=Q\left(x+2^{j^{\prime}}, v\right)_{\ell}=Q\left(v^{\prime}, w_{Q}\right)_{\ell}=1$. This show that $P\left(x+2^{i^{\prime}}, 2^{i}\right) \cap Q\left(x+2^{j^{\prime}}, 2^{j}\right)=\emptyset$.

Claim 2.9. If $i \in H_{n-k}^{0}$ and $j \in H_{n, n-k}^{0}$, then $P \| Q$.
Proof. Note that $x_{i}=x_{j}=0$. The proof is the same as that in Claim 2.7, except for the path P constructed in Claim 1.1 for Eqs. (1), (2) and (3).

Claim 2.10. If $i \in H_{n, n-k}^{1}$ and $j \in H_{n, n-k}^{0}$, then $P \| Q$.
Proof. Note that $x_{i}=1$ and $x_{j}=0$. Let w be the node adjacent to x in P. From the paths constructed in Claim 1.2 (cf. Eqs. from (8) to (12)), P ends with an edge labeled by -2^{i} and never changes a bit in $H_{n, n-k}^{0}(x)$ from 0 to 1 . Since $j \in H_{n, n-k}^{0}$, we have $P\left(w, 2^{i}\right)_{j}=0$. In this case, Q is the same as that in Claim 2.7. Thus, we can show $P\left(w, 2^{i}\right) \cap Q\left(x+2^{j}, 2^{j}\right)=$ \emptyset using a similar argument.

Claim 2.11. If $i \in H_{n-k}^{1}$ and $j=*$, then $P \| Q$.
Proof. Note that $x_{i}=1$. There are four cases as follows.

Case 1: $\left|H_{n-k}^{1}(x)\right|<(n-k) / 2$. This implies $\left|H_{n-k}^{0}(x)\right|>(n-k) / 2$, and thus there is a position $\ell \in H_{n-k}^{0}(x)$ such that $x_{\ell}=0$. From the paths constructed in Claim 1.1 (cf. Eqs. (4) and (5)), P starts with an edge labeled by $-2^{i^{\prime}}$, where $i^{\prime}=\operatorname{NEXT}_{x}(i)$, and ends with an edge labeled by -2^{i}. Also, from the paths constructed in Claim 1.3 (cf. Eqs. (13) and (16)), Q has the label $*$ in its first edge and last edge. Since $P\left(x-2^{i^{\prime}}, 2^{i}\right)$ never changes a bit from 0 to 1 , we have $P\left(x-2^{i^{\prime}}, 2^{i}\right)_{\ell}=0$. On the other hand, since x_{ℓ} has been changed to 1 when Q passes through the first edge and then keeps unchanged until Q passes through the last edge, we have $Q\left(x \oplus\left(2^{n-k}-1\right), 2^{n-k}-1\right)_{\ell}=1$. Thus, $P\left(x-2^{i}, 2^{i}\right) \cap Q\left(x \oplus\left(2^{n-k}-1\right), 2^{n-k}-1\right)=\emptyset$.

Case 2: $(n-k) / 2 \leqslant\left|H_{n-k}^{1}(x)\right| \leqslant(n-k) / 2+\lambda$. This implies $(n-k) / 2-\lambda \leqslant\left|H_{n-k}^{0}(x)\right| \leqslant(n-k) / 2$. In this case, P is the same as that described in Case 1. Also, from the paths constructed in Claim 1.3 (cf. Eqs. (14) and (17)), Q starts with an edge labeled by $+2^{j^{\prime}}$, where $j^{\prime}=\max H_{n-k}^{0}(x)$, and ends with an edge labeled by *. Since $P\left(x-2^{i}, 2^{i}\right)$ never changes a bit from 0 to 1 , we have $P\left(x-2^{i}, 2^{i}\right)_{j^{\prime}}=0$. On the other hand, since $x_{j^{\prime}}$ has been changed to 1 when Q passes through the first edge and then keeps unchanged until Q passes through the last edge, we have $Q\left(x+2^{j^{\prime}}, 2^{n-k}-1\right)_{j^{\prime}}=$ 1. Thus, $P\left(x-2^{i}, 2^{i}\right) \cap Q\left(x+2^{j^{\prime}}, 2^{n-k}-1\right)=\emptyset$.

Case 3: $H_{n, n-k}^{1}(x)=\emptyset$ and $\left|H_{n-k}^{1}(x)\right|>(n-k) / 2+\lambda$. This implies $\left|H_{n-k}^{0}(x)\right|<(n-k) / 2-\lambda$, and thus there
is a position $\ell \in H_{n-k}^{1}(x) \backslash\{i\}$ such that $x_{\ell}=1$. Let $j^{\prime}=$ $\operatorname{NEXT}_{x}(j)$. From the paths constructed in Claim 1.3 (cf. Eqs. (17) and (18)), Q starts with an edge labeled by $+2^{j^{\prime}}$ or $*$, and ends with an edge labeled by $*$. For $n-k>2$, from the paths constructed in Claim 1.1 (cf. Eq. (6)), we have $\operatorname{NEXT}_{x}(i)=i$ and P has the label -2^{i} in its first edge and last edge. Note that P must have passed through an edge with label $*$, denoted by $w_{P} \xrightarrow{*} w_{P}^{\prime}$. Since x_{i} has been changed to 0 when P passes through the first edge, we have $P\left(x-2^{i}, w_{P}\right)_{i}=$ 0 and $P\left(w_{P}^{\prime}, 2^{i}\right)_{i}=1$. Moreover, since $P\left(x-2^{i}, w_{P}\right)$ never changes a bit from 1 to 0 after the change of x_{i}, it follows that $P\left(x-2^{i}, w_{P}\right)_{\ell}=1$ and $P\left(w_{P}^{\prime}, 2^{i}\right)_{\ell}=0$. On the other hand, since $Q\left(x+2^{j^{\prime}}, 2^{n-k}-1\right)$ never changes a bit from 1 to 0 , we have $Q\left(x+2^{j^{\prime}}, 2^{n-k}-1\right)_{i}=$ $Q\left(x+2^{j^{\prime}}, 2^{n-k}-1\right)_{\ell}=1$. Thus, there is a different bit between nodes of $P\left(x-2^{i}, w_{P}\right) \cup P\left(w_{P}^{\prime}, 2^{i}\right)$ and $Q\left(x+2^{j^{\prime}}, 2^{n-k}-1\right)$.

For $n-k=2$, from the paths constructed in Claim 1.1 (cf. Eq. (6^{\prime})), we have $i \in H_{2}^{1}$. Thus, P starts with an edge labeled by $-2^{i^{\prime}}$, where $i^{\prime}=\max H_{2-i}^{1}(x)$, and ends with an edge labeled by -2^{i}. Since $x_{i^{\prime}}$ has been changed to 0 when P passes through the first edge, we have $P\left(x-2^{i^{\prime}}, 2^{i}\right)_{i^{\prime}}=0$. On the other hand, since $Q\left(x+2^{j^{\prime}}, 2^{n-k}-1\right)$ never changes a bit from 1 to 0 , we have $Q\left(x+2^{j^{\prime}}, 2^{n-k}-1\right)_{i^{\prime}}=1$. Thus, $P\left(x-2^{i^{\prime}}, 2^{i}\right) \cap Q\left(x+2^{j^{\prime}}, 2^{n-k}-1\right)=\emptyset$.

Case 4: $H_{n, n-k}^{1}(x) \neq \emptyset$ and $\left|H_{n-k}^{1}(x)\right|>(n-k) / 2+\lambda$. This implies $\left|H_{n-k}^{0}(x)\right|<(n-k) / 2-\lambda$. In this case, P is the same as that described in Case 3. From the paths constructed in Claim 1.3 (cf. Eq. (15)), Q starts with an edge labeled by $-2^{j^{\prime}}$, where $j^{\prime}=\max H_{n}^{1}(x)$, and ends with an edge labeled by $*$. For $n-k>2$, since $H_{n, n-k}^{1} \neq \emptyset$, we have $j^{\prime}>i$. By the same argument as that in Case 3, we can show that $P\left(x-2^{i}, w_{P}\right)_{i}=$ $P\left(w_{P}^{\prime}, 2^{i}\right)_{\ell}=0$ and $P\left(w_{P}^{\prime}, 2^{i}\right)_{i}=P\left(x-2^{i}, w_{P}\right)_{\ell}=1$. On the other hand, since $Q\left(x-2^{j^{\prime}}, 2^{n-k}-1\right)$ never changes a bit from 1 to 0 in $H_{n-k}^{1}(x)$, we have $Q(x-$ $\left.2^{j^{\prime}}, 2^{n-k}-1\right)_{\ell}=Q\left(x-2^{j^{\prime}}, 2^{n-k}-1\right)_{i}=1$. This shows that every node of $P\left(x-2^{i}, w_{P}\right) \cup P\left(w_{P}^{\prime}, 2^{i}\right)$ has a bit different from nodes of $Q\left(x-2^{j^{\prime}}, 2^{n-k}-1\right)$.
For $n-k=2$, by the same argument as that in Case 3, we have $P\left(x-2^{i^{\prime}}, 2^{i}\right)_{i^{\prime}}=0$. Since $H_{n, n-k}^{1} \neq$ \emptyset, we have $j^{\prime}>i^{\prime}$. On the other hand, since $Q(x-$ $2^{j^{\prime}}, 2^{n-k}-1$) does not contain an edge with label $-2^{i^{\prime}}$, we have $Q\left(x-2^{j^{\prime}}, 2^{n-k}-1\right)_{i^{\prime}}=1$. Thus, $P\left(x-2^{i^{\prime}}, 2^{i}\right) \cap$ $Q\left(x-2^{j^{\prime}}, 2^{n-k}-1\right)=\emptyset$.

Claim 2.12. If $i \in H_{n-k}^{0}$ and $j=*$, then $P \| Q$.
Proof. Note that $x_{i}=0$. There are four cases as follows.

Case 1: $\left|H_{n-k}^{0}(x)\right|>(n-k) / 2$. Since $\left|H_{n-k}^{0}(x)\right| \geqslant 2$, there is a position $\ell \in H_{n-k}^{0}(x) \backslash\{i\}$ such that $x_{\ell}=0$. In this case, $\operatorname{NEXT}_{x}(i)=i$. From the paths constructed in Claim 1.1 (cf. Eq. (3)), P has the label $+2^{i}$ in its first edge and the label -2^{i} in its last edge. Also, from the paths constructed in Claim 1.3 (cf. Eqs. (13) and
(16)), Q has the label $*$ in its first edge and last edge. Since $P\left(x+2^{i}, 2^{i}\right)$ never changes a bit from 0 to 1 after the change of x_{i}, we have $P\left(x+2^{i}, 2^{i}\right)_{\ell}=0$. On the other hand, since x_{ℓ} has been changed to 1 when Q passes through the first edge and then keeps unchanged until Q passes through the last edge, we have $Q\left(x \oplus\left(2^{n-k}-1\right), 2^{n-k}-1\right)_{\ell}=1$. Thus, there is a different bit between nodes of $P\left(x+2^{i}, 2^{i}\right)$ and $Q\left(x \oplus\left(2^{n-k}-1\right), 2^{n-k}-1\right)$.

Case 2: $H_{n, n-k}^{1}(x) \neq \emptyset$ and $(n-k) / 2-\lambda \leqslant$ $\left|H_{n-k}^{0}(x)\right| \leqslant(n-k) / 2$ or $H_{n, n-k}^{1}(x)=\emptyset$ and $0<$ $\left|H_{n-k}^{0}(x)\right| \leqslant(n-k) / 2$. This implies that $\left|H_{n-k}^{1}(x)\right| \geqslant$ $(n-k) / 2 \geqslant 1$, and thus there is a position $\ell \in H_{n-k}^{1}(x)$ such that $x_{\ell}=1$. Let $i^{\prime}=\operatorname{NEXT}_{x}(i)$. From the paths constructed in Claim 1.1 (cf. Eqs. (1) and (2)), P starts with an edge labeled by $+2^{i}$ or $*$, and ends with an edge labeled by -2^{i}. If $i^{\prime} \neq *$, then P must have passed through an edge with label $*$, denoted by $w_{P} \xrightarrow{*} w_{P}^{\prime}$. Also, from the paths constructed in Claim 1.3 (cf. Eqs. (14) and (17)), Q starts with an edge labeled by $+2^{j^{\prime}}$, where $j^{\prime}=\max H_{n-k}^{0}(x)$, and ends with an edge labeled by $*$. Note that $j^{\prime} \geqslant i$. Since $P\left(x+2^{i^{\prime}}, w_{P}\right)$ does not contain an edge with label $+2^{j^{\prime}}$, we have $P\left(x+2^{i^{\prime}}, w_{P}\right)_{j^{\prime}}=0$ and $P\left(w_{P}^{\prime}, 2^{i}\right)_{j^{\prime}}=1$. Moreover, since $P\left(x+2^{i}, w_{P}\right)$ never changes a bit from 1 to 0 , we have $P\left(x+2^{i^{\prime}}, w_{P}\right)_{\ell}=1$ and $P\left(w_{P}^{\prime}, 2^{i}\right)_{\ell}=0$. On the other hand, since $x_{j^{\prime}}$ has been changed to 1 when Q passes through the first edge and then keeps unchanged until Q passes through the last edge, we have $Q\left(x+2^{j^{\prime}}, 2^{n-k}-1\right)_{j^{\prime}}=1$. Moreover, since $Q\left(x+2^{j^{\prime}}, 2^{n-k}-1\right)$ never changes a bit from 1 to 0 , we have $Q\left(x+2^{j^{\prime}}, 2^{n-k}-1\right)_{\ell}=1$. Thus, there is a different bit between nodes of $P\left(x+2^{i^{\prime}}, w_{P}\right) \cup P\left(w_{P}^{\prime}, 2^{i}\right)$ and $Q\left(x+2^{j^{\prime}}, 2^{n-k}-1\right)$.

Case 3: $H_{n, n-k}^{1}(x) \neq \emptyset$ and $0<\left|H_{n-k}^{0}(x)\right|<(n-$ $k) / 2-\lambda$. In this case, P is the same as that described in Case 2. From the paths constructed in Claim 1.3 (cf. Eq. (15)), Q starts with an edge labeled by $-2^{j^{\prime}}$, where $j^{\prime}=\max H_{n}^{1}(x)$, and ends with an edge labeled by $*$. Since $H_{n, n-k}^{1}(x) \neq \emptyset$, we have $j^{\prime} \in H_{n, n-k}^{1}(x)$. Moreover, since $\left|H_{n-k}^{1}(x)\right|>(n-k) / 2+\lambda$, there is a position $\ell \in H_{n-k}^{1}(x)$ such that $x_{\ell}=1$. Since $P(x+$ $\left.2^{i^{\prime}}, w_{P}\right)_{\ell}=1$, it implies $P\left(w_{P}^{\prime}, 2^{i}\right)_{\ell}=0$. Also, since $P\left(x+2^{i^{\prime}}, w_{P}\right)$ never changes a bit from 1 to 0 , we have $P\left(x+2^{i^{\prime}}, w_{P}\right)_{j^{\prime}}=1$. On the other hand, since $x_{j^{\prime}}$ has been changed to 0 when Q passes through the first edge and then keeps unchanged until Q passes through the last edge, we have $Q\left(x-2^{j^{\prime}}, 2^{n-k}-1\right)_{j^{\prime}}=$ 0 . Moreover, since $Q\left(x-2^{j^{\prime}}, 2^{n-k}-1\right)$ does not contain an edge with label -2^{ℓ}, we have $Q\left(x-2^{j^{\prime}}, 2^{n-k}-\right.$ $1)_{\ell}=1$. Thus, there is a different bit between nodes of $P\left(x+2^{i^{\prime}}, w_{P}\right) \cup P\left(w_{P}^{\prime}, 2^{i}\right)$ and $Q\left(x-2^{j^{\prime}}, 2^{n-k}-1\right)$.

Case 4: $H_{n-k}^{0}(x)=\emptyset$. This case is impossible because $i \in H_{n-k}^{0}(x)$.

Claim 2.13. If $i \in H_{n, n-k}^{1}$ and $j=*$, then $P \| Q$.

Proof. Since $i \in H_{n, n-k}^{1}(x)$, it implies $H_{n, n-k}^{1}(x) \neq \emptyset$. There are six cases as follows.

Case 1: $H_{i, n-k}^{1}(x) \neq \emptyset$ and $\left|H_{n-k}^{1}(x)\right|<(n-k) / 2$. This implies $\left|H_{n-k}^{0}(x)\right|>(n-k) / 2$, and thus there is a position $\ell \in H_{n-k}^{0}(x)$ such that $x_{\ell}=0$. From the paths constructed in Claim 1.2 (cf. Eq (9)), P starts with an edge labeled by $-2^{i^{\prime}}$, where $i^{\prime}=\max H_{i}^{1}(x)$, and ends with an edge labeled by -2^{i}. Also, from the paths constructed in Claim 1.3 (cf. Eq. (13)), Q has the label $*$ in its first edge and last edge. Since $P\left(x-2^{i^{\prime}}, 2^{i}\right)$ never changes a bit from 0 to 1 , we have $P\left(x-2^{i^{\prime}}, 2^{i}\right)_{\ell}=0$. On the other hand, since x_{ℓ} has been changed to 1 when Q passes through the first edge and then keeps unchanged until Q passes through the last edge, we have $Q\left(x \oplus\left(2^{n-k}-1\right), 2^{n-k}-1\right)_{\ell}=1$. Thus, $P\left(x-2^{i^{\prime}}, 2^{i}\right) \cap Q\left(x \oplus\left(2^{n-k}-1\right), 2^{n-k}-1\right)=\emptyset$.

Case 2: $H_{i, n-k}^{1}(x)=\emptyset$ and $\left|H_{n-k}^{1}(x)\right|<(n-k) / 2$. This implies $\left|H_{n-k}^{0}(x)\right|>(n-k) / 2$. In this case, P is a path constructed in Claim 1.2(cf. Eqs. (8) and (10)) and Q is a path constructed in Claim 1.3 (cf. Eq. (13)). The same argument as that in Case 1 shows that $P \| Q$.

Case 3: $H_{i, n-k}^{1}(x) \neq \emptyset$ and $(n-k) / 2 \leqslant\left|H_{n-k}^{1}(x)\right| \leqslant$ $(n-k) / 2+\lambda$. It implies $(n-k) / 2-\lambda \leqslant\left|H_{n-k}^{0}(x)\right| \leqslant$ $(n-k) / 2$. In this case, P is the same as that described in Case 1. From the paths constructed in Claim 1.3 (cf. Eq. (14)), Q starts with an edge labeled by $+2^{j^{\prime}}$, where $j^{\prime}=\max H_{n-k}^{0}(x)$, and ends with an edge labeled by *. Since $P\left(x-2^{i^{\prime}}, 2^{i}\right)$ never changes a bit from 0 to 1 , we have $P\left(x-2^{i^{\prime}}, 2^{i}\right)_{j^{\prime}}=0$. On the other hand, since $x_{j^{\prime}}$ has been changed to 1 when Q passes through the first edge and then keeps unchanged until Q passes through the last edge, we have $Q\left(x+2^{j^{\prime}}, 2^{n-k}-1\right)_{j^{\prime}}=$ 1. Thus, $P\left(x-2^{i^{\prime}}, 2^{i}\right) \cap Q\left(x+2^{j^{\prime}}, 2^{n-k}-1\right)=\emptyset$.

Case 4: $H_{i, n-k}^{1}(x)=\emptyset$ and $(n-k) / 2 \leqslant\left|H_{n-k}^{1}(x)\right| \leqslant$ $(n-k) / 2+\lambda$. This implies $(n-k) / 2-\lambda \leqslant\left|H_{n-k}^{0}(x)\right| \leqslant$ $(n-k) / 2$. In this case, P is a path constructed in Claim 1.2 (cf. Eq. (10)) and Q is a path constructed in Claim 1.3 (cf. Eq. (14)). The same argument as that in Case 3 shows that $P \| Q$.

Case 5: $H_{i, n-k}^{1}(x) \neq \emptyset$ and $\left|H_{n-k}^{1}(x)\right|>(n-k) / 2+\lambda$. This implies $\left|H_{n-k}^{0}(x)\right|<(n-k) / 2-\lambda$. From the paths constructed in Claim 1.2 (cf. Eq (9)), P starts with an edge labeled by $-2^{i^{\prime}}$, where $i^{\prime}=\max H_{i}^{1}(x)$, and ends with an edge labeled by -2^{i}. Since $x_{i^{\prime}}$ has been changed to 0 when P passes through the first edge, we have $P\left(x-2^{i^{\prime}}, 2^{i}\right)_{i^{\prime}}=0$. Also, since x_{i} remains unchanged until P passes through the last edge, we have $P\left(x-2^{i^{\prime}}, 2^{i}\right)_{i}=1$. On the other hand, from the paths constructed in Claim 1.3 (cf. Eq. (15)), Q starts with an edge labeled by $-2^{j^{\prime}}$, where $j^{\prime}=\max _{n}^{1}(x)$, and ends with an edge labeled by $*$. Note that it is possible $j^{\prime}=i$. If $j^{\prime} \neq i$, it is clear that $Q\left(x-2^{j^{\prime}}, 2^{n-k}-1\right)$ contains an edge with label -2^{i}, denoted by $w \xrightarrow{-2^{i}} w^{\prime}$. Since $x_{i^{\prime}}$ alters after the change of x_{i} in Q, we have $Q\left(x-2^{j^{\prime}}, w\right)_{i^{\prime}}=1$ and $Q\left(w^{\prime}, 2^{n-k}-1\right)_{i}=0$. This shows that every node of $P\left(x-2^{i^{\prime}}, 2^{i}\right)$ has a bit different from nodes of
$Q\left(x-2^{j^{\prime}}, w\right) \cup Q\left(w^{\prime}, 2^{n-k}-1\right)$.
Case 6: $H_{i, n-k}^{1}(x)=\emptyset$ and $\left|H_{n-k}^{1}(x)\right|>(n-k) / 2+$ λ. This implies $\left|H_{n-k}^{0}(x)\right|<(n-k) / 2-\lambda$. Since $\left|H_{n-k}^{1}(x)\right|>1$, there is a position $\ell \in H_{n-k}^{1}(x)$ such that $x_{\ell}=1$. In this case, Q is the same as that described in Case 5 . Since $x_{j^{\prime}}$ has been changed to 0 when Q passes through the first edge and then keeps unchanged until Q passes through the last edge, we have $Q\left(x-2^{j^{\prime}}, 2^{n-k}-1\right)_{j^{\prime}}=0$. Also, since $Q\left(x-2^{j^{\prime}}, 2^{n-k}-1\right)$ never changes x_{ℓ} to 0 , we have $Q\left(x-2^{j^{\prime}}, 2^{n-k}-1\right)_{\ell}=1$. Let $i^{\prime}=\operatorname{NEXT}_{x}(i)$. From the paths constructed in Claim 1.2 (cf. Eqs. (11) and (12)), P starts with an edge labeled by $+2^{i^{\prime}}$ or $*$, and ends with an edge labeled by -2^{i}. If $i^{\prime} \neq *$, then $i^{\prime}=\max H_{n-k}^{0}(x)$ and P must have passed through an edge with label $*$, denoted by $w \xrightarrow{*} w^{\prime}$. Since $P\left(x+2^{i^{\prime}}, w\right)$ never changes a bit from 1 to 0 , we have $P\left(x+2^{i^{\prime}}, w\right)_{\ell}=1$ and $P\left(w^{\prime}, 2^{i}\right)$ contains an edge with label $-2^{j^{\prime}}$. This further implies that $P\left(x+2^{i^{\prime}}, w\right)_{j^{\prime}}=1$ and $P\left(w^{\prime}, 2^{i}\right)_{\ell}=0$. This shows that every node of $P\left(x+2^{i^{\prime}}, w\right) \cup P\left(w^{\prime}, 2^{i}\right)$ has a bit different from nodes of $Q\left(x-2^{j^{\prime}}, 2^{n-k}-1\right)$.

Claim 2.14. If $i \in H_{n, n-k}^{0}$ and $j=*$, then $P \| Q$.
Proof. Note that $x_{i}=0$. From the paths constructed in Claim 1.2 (cf. Eq. (7)), we have $\operatorname{NEXT}_{x}(i)=i$. Thus, P has the label $+2^{i}$ in its first edge and the label -2^{i} in its last edge. Since x_{i} has been changed to 1 when P passes through the first edge and then keeps unchanged until P passes through the last edge, we have $P\left(x+2^{i}, 2^{i}\right)_{i}=1$. On the other hand, let w be the node adjacent to x in Q. From the paths constructed in Claim 1.3 (cf. Eqs. from (13) to (18)), Q never changes a bit in $H_{n, n-k}^{0}(x)$ from 0 to 1 . Since $i \in H_{n, n-k}^{0}(x)$, we have $Q\left(w, 2^{n-k}-1\right)_{i}=0$. Thus, $P\left(x+2^{i}, 2^{i}\right) \cap Q\left(w, 2^{n-k}-1\right)=\emptyset$.

