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APPENDIX A
PROOFS OF CLAIMS IN THEOREM 1.

In the following proofs, we assume that H}!(z) =
{fs_l,fs_g,. . .,fo} with fs_1 > fs_o > -+ > fo and
H)(x) = {9t-1,9t-2,---,90} With g; 1 > g9 > --- >
go, where all index arithmetics of f, are taken modulo
s, and all index arithmetics of g, are taken modulo t.

Claim 1.1. If x matches one of the conditions in Egs. (1),
(2), (3), (4), (5), (6) (or (6")), then there is a unique path
that connects x and 0 in T;.

Proof. Let j = NEXT,(¢) and suppose = # 0. There are
the following scenarios:

Case l:i€ H! ,(z), |H! ,(z)]<(n—k)/2+ ) and
H}(z) = 0 (cf. Eq. (5)). In this case, j = max H!(z) =
fs—1.Since z; = 1, x is adjacent to x—27 in T}. Let y =
x—27. Clearly, H!(y) = {fs—2, fs—3,- - -, fo}. Note that
H! ()| < |H (@) < (n—k)/2+ X 'and H}(y) =
H}(z) = (0. Thus, if H!(y) = 0, then y = 0. In this
case, T =2 0 is the desired path connecting x and 0
in T;. Otherwise, y is still in the situation of Case 1.
By the same argument we know that y is adjacent to
the node y — 27" in T}, where j/ = NEXT,(i) = f._o.
Repeat this process until the path passes through the

node 2f0 in T;. Therefore, we can find the following
ofel
unique path that connects x and 0 in T;: P : x Ekiy

_ofs— _ofs— _of
(xf2fsfl) 24)2 (If2fsfl f2f572) 2 3 i;
(270) =28 o

Case 2: i € H! ,(z), |H ()] < (n—k)/2+ A
and H}(z) # 0 (cf. Eq. (4)). In this case, since x; = 1
and H}(z) # 0, we suppose i = f, for some 0 <
p < s—1. By Eq. (4), j = maxH}(z) = f,_1. Since
z; = 1, x is adjacent to z — 27 in T;. Let y = = — 2.
Clearly, H(5) = {fy 2 fys.- - fo} and [H}_ (y)] <
|H! , (z)] < (n—k)/2+ \. Thus, if H}(y) # 0, we can
repeat this process until the path passes through the
node w =z — Y. 2. Let Q be the path described

—2lr (z — 20-1) —2lrse (z — 21 —

as follows: Q : z —

_ofp: _of
2fpf2) e 2w Now, it is easy to check that
|H)_(w)|=|H)_y(x)|—p < (n—k)/2+ X and H} (w) =
(. Thus, w is in the situation of Case 1. Let P be the

path connecting w and 0. Therefore, we can find the
unique path T;[z, 0] by concatenating @ and P.

Case 3:i € H? ,(z) and |H?_, ()| > (n—k)/2 (cf.
Eq. (3)) In this case, we have j = i. Since z; = 0,
is adjacent to = + 27 in T;. Let z = z + 27. Clearly,
zi=%;=1and i € H} ,(2). Also, [H? ,(z)] > (n —
k)/2 implies |H} ,(z)] < (n — k)/2. Thus, we have
H ()] = [HD (@) +1 < ((n—k)/2—05) +1 <
(n—k)/2+ X, where A = 0.5 or A = 1. This shows that
2 is in the situation of Case 1 for H?(z) # () or Case 2
for H?(z) = (. No matter what the situation does 2z
have, let P be the path connecting z and 0. Therefore,
we can find the unique path T;[z, 0] by concatenating

z*% 2 and P

Case 4: i € H? ,(z), |[HY_,(z)] < (n —k)/2, and
H?(z) = 0 (cf. Eq. (2)). In this case, we have j =
x. Let 2 = 2 ® (2"7%F — 1) be the node adjacent to
z in T;. Since i € H? ,(x), it implies z; = 7; = 1,
and thus i € H} ,(z2). Clearly, H}(z) = H?(z) = 0.
Moreover, |H? _, (z)| < (n — k)/2 implies |H! _,(2)| =
|HY _, (z)] < (n—k)/2+ A. This shows that 2 is in the
situation of Case 1. Let P be the path connecting z
and 0. Therefore, we can find the unique path T;[z, 0]
by concatenating z — 2 and P.

Case 5: i € H? ,(x), |[HY . (x)] < (n—k)/2, and
HP(z) # 0 (cf. Eq. (1)). In this case, since z; = 0,
we suppose i = g, for some 0 < ¢ < ¢t — 1. Since
H?(z) # 0, by Eq. (1) we have j = max H?(z) = g,_1.
Since z; = 0, z is adjacent to z+27 in T;. Let y = x+27.
Clearly, H)(y) = {9g4-2,9q-3,---,90} and [H})_,(y)| =
|HY ,(z)] —1< (n—k)/2. Thus, if H)(y) # 0, we can
repeat this process until the path passes through the
node w = x + Y9 29" Let Q be the path described

+2%a1 +2%42

as follows: Q :z "— (z+2941) "= (x4 2%-1 4
9q— g
99a-2) T2 L T2W 0 Now, it is easy to check that

HY(w) = {gi-1,G1—2,--.,94} and H?(w) = 0. Thus,
w; = x; = 0and i € HY ,(w). Since |H? ,(w)| =
|HY ,(z)] —¢< (n—k)/2and HY(w) =0, w is in the
situation of Case 4. Let P be the path connecting w
and 0. Therefore, we can find the unique path T;[z, 0]
by concatenating ) and P.

Case 6:i € H! ,(z) and |H! ,(z)] > (n—k)/2+ A
(cf. Eq. (6)). In this case, we have n —k > 2 and j = 1.



Since z; = 1, x is adjacent to x — 27 in T}. Let z =
T— 2j .Clearly, z; =z; = 0and i € H? k( ). Moreover,
1 _(@)] > (n = k)/2-+ X implies [H2_y ()] < (n

)/2—)\. Thus, we have |H?_, (2 )|—| 0 (@)]+1<
((n—k)/2—X—=0.5)+1 < (n—k)/2. This shows that = is
in the situation of Case 4 for H?(z) = () or Case 5 for
H?(z) # (. No matter what the situation does z have,
let P be the path that connects z and 0 in 7;. Thus,
we obtain the unique path T;[z,0] by concatenating

Y
r — z and P.

Case 7: i € Hi(z) and |Hi(x)| = 2 (cf. Eq. (6)).
In this case, we have n — &k = 2 and A = 0.5. Since
o = x1 = 1 and either ¢ =1 or ¢ = 0, by Eq. (6') we
have j = max H}_, = i® 1. Since z; = 1, = is adjacent
tox—27 in T;. Let 2 = x — 27. Clearly, 2; = z; = 1 and
i € H' (). Moreover, |H! ,(2)| = |H!  (z)]-1=
1< (n—k)/2+Xand H}(z) = 0. This shows that 2
is in the situation of Case 1. Let P be the path that
connects z and 0 in 7;. Thus, we obtain the unique

path T;[x, 0] by concatenating = =% 2 and P.
As a result, this completes the proof. O

Claim 1.2. If « matches one of the conditions in Egs. (7),
(8), (9), (10), (11), (12), then there is a unique path that
connects x and 0 in T;.

Proof. Let j = NEXT, (i) and suppose x # 0. There are
the following scenarios:

Case 1: i € H, , ,(z) and H}(z) = 0 (cf. Eq. (8)).
In this case, we have j = max H!(z) = f,_1. Since
H}!(z) = 0, a proof similar to that of Case 1 in
Claim 1.1 shows that there is a unique path connecting
r and 0 in T;.

Case 2: i € H,, ,(z), H, (zr) = 0 and 0 <
|H! ()] < (n—k)/2+ X (cf. Eq. (10)). In this case,
since i € H} , . (z) and H}_,(z) # 0, by Eq. (10) we
suppose j :'male _p(x) = fpforsome 0 < p < s—1.
A proof similar to that of Case 2 in Claim 1.1 shows
that there is a unique path connecting = and 0 in 7;.

Case 3: ¢ € H, ,(x), H}, (¥r) = 0, and
|H! ,(z)] = n —k (cf. Eq. (12)). In this case, we
have j = % Let z = 2 @ (2% — 1) be the node
adjacent to z in T;. Since ¢ € H}m p(x), it implies
zi = x; = 1, and thus ¢ € H} , _,(z). Moreover,
Hlln k(z) = Hzltnfk( ) - 01 and ‘H'rlt k:( )| =n-—k
implies H! ,(z) = 0. Thus, H(z) = H}, () U
H! ,(z) = 0. This shows that z is in the situation
of Case 1. Let P be the path connecting z and 0.
Therefore, we can find the unique path T;[z,0] by
concatenating z — z and P.

Case 4: i 6 H) , w(x), H, (z) =0, and (n —

k)/2+ X < |H,_,.(z)] < n—Ek (cf. Eq. (11)). In this case,
since |H! . (x )| < n—k, it implies HY_, (z) # 0. By
Eq. (11), we suppose j = max HY , (z) = g, for some
0<¢g<t—1.Sincez; = O z is adjacent to z+27 in T;.
Lety = 2+ 27. Clearly H? ,(v) = {gq—1.9g-2,---+ 90}
Moreover, H},, ;. (y) = H! (@) =0and (n—k)/2+

i,m—

A< Hy y(2)] < [Ho ()] < n— K Of |Hy oy (y)] #
n—k, then y is still in the situation of Case 4 By

the same argument, we can repeat this process until
the path passes through the node w = = + >} _,29".
Let @ be the path described as follows: @ : = 2%
(24290) TE5 " (g4290 +29a-1) TEL7 200 Now,
it is easy to check that HO( ) =A{9t—1,Gt—2,- -+ gg+1}-
Thus, HY ,(w) =0 and |H}! , (w)| = n— k. Moreover,
i € Hrlzn k(w) and Hzln k:( ) Hzln k( ) - @ Thus
w is in the situation of Case 3. Let P be the path
connecting w and 0. Therefore, we can find the unique
path T;[x,0] by concatenating Q and P.

Case5:ic H), ,(r)and H}, ,(x)# 0 (cf. Eq. (9)).
In this case, since z; = 1 and H, }n w(x) # 0, by Eq. (9)
we suppose j = max H}, _,(z) = f, for some 0 < p <
s — 1. A proof similar to that of Case 2 in Claim 1.1
shows that there is a path () connecting = and a node
w =z — Y p_. 2" such that H! _,(w) = 0, where
0<r<p.1fr-0 then H}(w) = 0, and thus w
is in the situation of Case 1. Otherwise, H! ,(x) #
0, we check the range of H! ,(z) as follows: If 0 <
|H! (w)| < (n—k)/2+ ), then w is in the situation of
Case2 If (n—k)/2+ X < |H!_, (w)| <n—Fk, then wis
in the situation of Case 4; If |H! ,(w)] =n—k, then
w is in the situation of Case 3. No matter what the
situation does w have, let P be the path connecting w
and 0. Therefore, we can find the unique path T;[z, 0]
by concatenating @) and P.

Case 6: i € H)) , , () (cf. Eq. (7)). In this case, we
have j = i. Since z; = 0, z is adjacent to z + 27 in
T;. Let z = z + 27. Clearly, i € H, , ,(2). Thus, 2
is possible in the situation of any above-mentioned
case. Let P be the path that connects z and 0. Thus,
we obtain the unique path T;[x,0] by concatenating

z 1% 2 and P.
As a result, this completes the proof. O

Claim 1.3. If x matches one of the conditions in Egs. (13),
(14), (15), (16), (17), (18), then there is a unique path that
connects x and 0 in T;.

Proof. Let j = NEXT,(i) and suppose x # 0. There are
the following scenarios:
Case 1: i = x, H), ,(x) =0, andH0 k()*@

(cf. Eq. (18)) In this case, we have j = *. Let z =

@ (2% — 1) be the node adjacent to z in T}. Since
Hran L() =0 and H? ,(z) =0, it implies z = 0. In

this case, z — 0 is the desired path.

Case 2:i=x, Hy , ;(z) =0, and 0 < |[H)_,(z)] <
(n — k)/2 (cf. Eq. (17)). Recall that we regard %’
as the smallest element in HY_,(z) U {x}. In this
case, since HY ,(z) # 0, by Eq. (17), we suppose
j=maxH?_,(z) = g, for some 0 < g < t—1. A proof
similar to that of Case (4) in Claim 1.2 shows that there
is a path Q connecting z and a node w = 2"7% —1
such that H? , (w) = (. Now, w is in the situation of
Case 1. Therefore, we can find the unique path T;[z, 0]



by concatenating @ and w — 0.

Case 3: i = *, H, , ,(r) =0, and |H] ,(z)| >
(n—Fk)/2 (cf. Eq. (16)). In this case, we have ] = x. Let
z = 2®(2" % 1) be the node adjacent to T in T;. Since
x #0and H), ,(x) =0, it implies |H} k()|>0
(1e,|H @) < n—k). Also,n—k‘>\ 0 ()| >
(n —k)/2 implies 0 < |HY ,(2)] < (n — k:)/2 More-
over, H)  ,(2) = Hy, ,(r) = 0. Thus, z is in the
situation of Case 2. Let P be the path connecting =
and 0. Therefore, we obtain the unique path T;[z, 0]

by concatenating © — z and P.

Case4:i=x H), ,(x)#0, and |H)_,(x)] < (n—
k)/2 — X (cf. Eq. (15)). In this case, since |H? , (z)| <
(n—k)/2—\, itimplies |H} , (z)| > (n—Fk)/24+X > 1.5.
Note thatif n—k =2, then |H}(z)| = 2, and thus 2o =
rr = L Suppose Hnn k( ) = {fsflyfsfmﬂ'vfp}
for some 2 < p < s — 1. By Eq. (15), we have
j = maxH}(x) = fo_1. Since z; = 1, x is adjacent

tox—2/in T;. Let y = x — 27. Clearly, nn—k(Y) =
{fs 27fs 37"'7.fp}and| nf()l_‘ 7()‘<(’I’L—
k)/2 =X 1 Hy . (y) # 0, y is still in the situation

of Case 4. By the same argument, we can repeat this
process until the path passes through the node w =
5_1 2f ". Let P be the path described as follows:

z—

_ofs _ofa Cofe:

P:x 2_>1 (m_2fsfl) 2 2 (:L»_Qfs—l _2fs—2) LJ
_ofp

- 2% w. Now, it is easy to check H , ,(w) = 0

and |HY_, (w)| = [HO_,(@)] < (n— >/2—A Thus, if
HY ,(w) =0, we have w = 2"~% — 1 and it is in the
situation of Case 1. Therefore, we obtain the desired
path by concatenating P and w —— 0. Otherwise,
w is in the situation of Case 2. Let ) be the path
connecting w and 0. Therefore, we can find the unique

path T;[x, 0] by concatenating P and Q).

Case5 i=x Hy, .(x)#0,and (n —k)/2 =X <
|HO ()] < (n— k)/? (cf. Eq. (14)). In this case, since
|Hn L(@)] = (n—k)/2—X > 0.5, we have H?_, (x) # 0.
Note that if n — k = 2, then 0.5 = 1 — X\ < |HY(2)| <
1, and thus zy ® 1 = 1. By Eq. (14), we suppose
j = maxHY ,(z) = g, forsome 0 < ¢ < t—1. A
proof snmlar to that of Case (4) in Claim 1.2 shows
that there is a path @ connecting = and a node w
such that |[HY_, (w)| < (n—k)/2 = X. Now, w is in the
situation of Case 4. Let P be the path connecting w
and 0. Therefore, we can find the unique path T;[z, 0]
by concatenating @) and P.

Case 6: i =+, H) , _,(x) #0, and |H)_,(x)] > (n—

k)/2 (cf. Eq. (13)). In this case, we have j = *. Let
z2=z® (2"*’“ — 1) be the node adjacent to z in T;.
Since [H?_,(x)| > (n — k)/2, it implies |H?_,(2)| <
(n — k)/2 Smce mmox(2) = H) p(x) # 0, z is in
the situation of Case 4 or Case 5. No matter what the
situation does z have, let P be the path connecting z
and 0. Therefore, we obtain the unique path T;[z, 0]
by concatenating z — z and P.

As a result, this completes the proof. O

APPENDIX B

PROOFS OF CLAIMS IN THEOREM 2.

The following lemmas shows the independency of
spanning trees. For convenience, if P is a path and
u,v € V(P), we use P(u,v) to denote the subpath of
P from u to v. Also, we write P(u,v); = b, where
0<i<n-1and b€ {0,1}, to mean that x; = b for
every node & = Zp_1%n—2 - To in P(u,v).

Claim 2.1. If i,j € H}_,, then P||Q.

Proof. Without loss of generality, we suppose n —k >

i > j > 0. Note that z; = «; = 1. There are three cases
as follows.
Case 1: |H! ,(z)| < (n—k)/2+ . From the paths

constructed in Claim 1.1 (cf. Eqs. (4) and (5)), we
know that P starts with an edge labeled by —27,
where i’ = NEXTw(z'), and ends with an edge labeled
by —2°. Since z; = 1 and it has been changed to
0 when P passes through the first edge, we have
P(z —2",2")y = 0. Also, since z; remains unchanged
until P passes through the last edge, we have P(z —
27 2%); = 1. Similarly, Q starts with an edge labeled
by —2/', where j/ = NEXT,(j), and ends with an
edge labeled by —27. Clearly, the path Q(z — 27", 2)

contains an edge with label —2¢, denoted by w =2 .
Since z; alters after the change of z; in (), we have
Q(z — 2" w)y =1 and Q(w',27); = 0. As a result,
every node of P(x — 2% 2%) has a bit different from
nodes of Q(x — 27" w)yuQ(w',29).

Case 2: |H! ,(z)] > (n—k)/2+ X (for n — k > 2).
In this case, we have NEXT, (i) = ¢ and NEXT,(j) = j.
Thus, P (respectively, Q) has the label —2° (respec-
tively, —27) in its first edge and last edge. Since
n—k > 2, we have |H71L_k(x)| > 3, and there is
a position ¢ € H}! ,(x)\ {i,j} such that z, = 1.
From the paths constructed in Claim 1.1 (cf. Eq. (6)),
we know that P and ) must have passed through
an edge with label x, denoted by wp — w) and
wg SN wb, respectively. Since x; has been changed
to 0 when P passes through the first edge, we have
P(z—2%,wp); = 0 and P(w),2%); = 1. Moreover, since
P(z—2%,wp) never changes a bit from 1 to 0 after the
change of z;, it follows that P(z — 2", wp), = 1 and
P(w's,2%), = 0. On the other hand, since Q(z—27, wq)
does not contain an edge with label —2, we have
Q(z — 2/, wq): = 1 and Q(wp,27); = 0. Again, since
Q(z — 27, wg) never changes a bit from 1 to 0 after
the change of z;, it follows that Q(z — 27, wg), = 1
and Q(wg, 27)y = 0. As a result, every node of
P(z—2',wp)UP(wp,2") has a bit different from nodes
of Q(z — 27, wg) U Q(wg, 2 7).

Case 3: |Hi(z)] = 2 (for n — k = 2). From the
paths constructed in Claim 1.1 (cf. Eq. (6)), we have
|H3 ()| = 2. Since i > j, we have i = 1 and j = 0. Let
i = max Hy_;(x) =0 and j' = max H; ;(z) = 1. The
proof is similar to Case 1. O



Claim 2.2. If i,j € H,_,, then P||Q.

Proof. Without loss of generahty, we suppose n —k >
i > j > 0. Note that z; = z; = 0. There are two cases
as follows.

Case 1: |HY ,(z)| < (n — k)/2. From the paths
constructed in Clalrn 1.1 (cf. Egs. (1) and (2)), P starts
with an edge labeled by +27 where i’ = NEXT, (%),
and ends with an edge labeled by —2° Sirnilarly,
Q starts with an edge labeled by +2j/, where ;'
NEXT,(j), and ends with an edge labeled by —2]
Moreovelr, P and @ can be descrlbed as follows:

2 27 2
P x+—>(:c+2’)—> —>u+—>u’+—>u—> S wp ——
+2

wh =+ —>(21)_—>0andQ (x+2ﬂ)—>~~-—>

wQ—>wQ—> v B s —>(2J)—>0. Note
that z;; = 0 and it is possible i’ = j or j' = x (we
ignore the relevant subpaths in this case). If j' # x,
then z;; = 0. By carefully analyzing the alteration
of bits, the bits in positions i, i/, j and j’ for nodes
in P are as follows: P(z 4+ 2", u); = P(u,u'); =

Pu” ,wp) = P(w), 2%); /—P(gc+2’ u)j=P(wp,2%);=
Pz + 2" u); = P(u u)y = P(wp,2"); = 0 and
P(wP,T) =P(x+ 2" ,u)y =P, uv)y =P, wp)y=
P, u);=P(u",wp); =P’ wp) v=1.

Slmllarly, the bits in positions ¢, i, j and j’ for nodes

in Q are as follows: Q(z + 2j/,wQ)i = Q' v'); =
Q" ¥)i = Qz + 2 wo)y = Qv + 2, wg); =
Qug,v); = Q') = QW",27); = 0 and
Qufy.v). = Qlity i = QW) = Q) =
Q(wgy,v); =Q(',v"); =Q(v", 27);=Q(x + 27 ,wg)j =
1.

We observe that only P(u/, u’) and Q(v',v") have the
same setting in these bits. Since |H?_, (z)| < (n—k)/2,
it implies |H} ,(z)] > (n — k)/2 and thus there is
a position ¢ € H! ,(z) such that z, = 1. Since z,
remains unchanged until P passes through the edge
with label %, we have P(u/,u’), = 1. By contrast, z,
has been changed to 0 when @ passes through the
edge with label %, we have Q(v',v), = 0. This shows
that P(x + 2i/ 20N Q(x +27,27) = 0.

Case 2: |HY , (z)| > (n—k)/2. From the paths con-
structed in Clalm 1.1 (cf. Eq. (3)), we have NEXT, (i) =
i and NEXT,(j) = j. Thus, P (respectively, )) has the
label +2° (respectively, +27) in its first edge and the
label —2° (respectively, —27) in its last edge. Since z;
has been changed to 1 when P passes through the
first edge, we have P(z + 2¢,2%); = 1. On the other
hand, since Q(x + 27,27) never changes a bit from 0
to 1 after the change of z;, we have Q(z+27,27); = 0.
Thus, P(z +2%,29) NQ(z +27,27) = (. O

Claim 2.3. If i,j € H, ,,_;, then P||Q.

Proof. Without loss of generality, we suppose n > i >
j=n—k.Sincei,j € Hy) , ,(r), wehave H}, ,(z)#
(). From the paths constructed in Claim 1.2 (cf. Eq. (9)),
we know that P starts with an edge labeled by —27',

where i/ = max H}(z), and ends with an edge labeled
by —2°. Note that it is possible i’ = j. Since z; = 1
and it has been changed to 0 when P passes through
the first edge, we have P(z — 2", 2%);, = 0. Also, since
x; remains unchanged until P passes through the last
edge, we have P(z —2,2%); = 1. There are two cases
as follows.

Case 1: Hj, () #0or [H) ,(x)] < (n—k)/2+ .
From the paths constructed in Clalm 1.2 (cf. Egs. (8),
(9) and (10)), (@ starts with an edge labeled by —9d',
where j' = NEXT,(j), and ends w1th an edge labeled
by —27. Clearly, the path Q(z — 2/',27) contains an

edge with label —2¢, denoted by w =2 . Since x;/
alters after the change of z; in @, we have Q(z —
21" w)y = 1 and Q(w',27); = 0. As a result, every
node of P(x—2%,2%) has a bit different from nodes of
Qz — 2", w) U Q' 29).

Case 2: Hj, ,(r) = 0 and (n — k)/2 + A <
|H! , (z)] <n—k. Let j/ = NEXT,(j). From the paths
constructed in Claim 1.2 (cf. Egs. (11) and (12)), @
starts with an edge labeled by +2J or x, and ends
with an edge labeled by —27. If j/ # x, then z;; = 0.
It follows that () must have passed through an edge
labeled by *. Since ) contains an edge with label —2

denoted by w =%, an argument similar to Case 1

shows that Q(z+27", w); = 1and Q(w’,27); = 0. Thus,
there is a different bit between nodes of P(z — 2% ,2%)
and Q(z + 27 ,w) U Q(w',27). O

Claim 24. Ifi,j € H?

n,n—k’

then P||Q.

Proof. Note that x; = z; = 0. From the paths con-
structed in Claim 1.2 (cf. Eq. (7)), we have NEXT, (i) =
i and NEXT.(j) = j. Thus, P (respectively, Q) has
the label +2° (respectively, +27) in its first edge and
the label —2° (respectively, —27) in its last edge. Since
x; (respectively, z;) has been changed to 1 when P
(respectively, @)) passes through the first edge, we
have P(z + 2¢,2%); = Q(z + 27,27); = 1. Also, since
P (respectively, J) does not contain an edge with
label +27 (respectively, +2%), we have P(x +2%,2%); =
Q(z+27,27); = 0. Thus, P(z+2%,29)NQ(x+27,27) = .
g

Claim 2.5. Ifi€ H} , and j € H)_,, then P||Q.

Proof. Note that 2; = 1 and z; = 0. There are four
cases as follows

Case 1. |H! ()] < (n — k)/2. This implies
|HO , (z)| > (n — k)/2. From the paths constructed in
Clalm 1.1 (cf. Egs. (4) and (5)), P starts with an edge
labeled by —2i' "where i’ = NEXT, (%), and ends with
an edge labeled by —2°. By contrast, from the paths
constructed in Claim 1.1 (cf. Eq. (3)), @ starts with an
edge labeled by +27 because NEXT,(j) = J, and ends
with an edge labeled by —27. Since P(z —2" 21) never
changes a bit from 0 to 1, we have P(z — 2¢ .29, =0.



On the other hand, since z; has been changed to 1
when @ passes through the first edge and then keeps
unchanged until @) passes through the last edge, we
have Q(z + 27,27); = 1. Thus, P(z — 27,2%) N Q(x +
27,29) = (.

Case 2: (n—k)/2 < |H, k( x)| < (n—k)/2+ A. This
implies (n —k)/2 — )\<| O (z)] < (n—k)/2. In this
case, P is the same as that descrlbed inCase 1. Letj =
NEXT, (7). From the paths constructed in Claim 1.1 (cf.
Egs. (1) and (2)), @ starts with an edge labeled by +27 '
or %, and ends with an edge labeled by —27. If j' #
*, then x;; = 0. It follows that ) must have passed
through an edge with label *, denoted by wqg — we.
Since P(xz— 2’ ,2%) never changes a bit from 0 to 1, we
have P(z—2",2)); = 0 and P(z—2",2%);, = 0 for j' #
*. On the other hand, since z; has been changed to 1
when Q passes through the first edge, we have Q(z +
21" wQ) v = 1 and Q(wp,2’);; = 0. Moreover, since
Q(z+27",wg) does not contain an edge with label +27,
we have Q(x+2jl,wQ) =0and Q(wp,27); = 1. Thus,
there is a different bit between nodes of P(z — 2/, 2%)
and Q(z + 27, wg) U Q(wh, 29).

Case 3: |H! ,(z)] > (n—k)/2+ X (for n — k >
2). This implies |H? ,(z)| < (n — k)/2 — A. Since
n—k > 2, we have |H! ,(z)| > 3 and there is a
position ¢ € H! ,(z)\ {i} such that 2, = 1. From
the paths constructed in Claim 1.1 (cf. Eq. (6)), we
have NEXT,(i) = i and P has the label —2 in its first
edge and last edge. In this case, ) is the same as that
described in Case 2. Note that both P and @ must
have passed through an edge with label %, denoted
by wp — w)p and wg — wg, respectively. Since
x; has been changed to 0 when P passes through
the first edge, we have P(x — 2',wp); = 0 and
P(w',2%); = 1. Also, since P(z—2%, wp) never changes
a bit from 1 to 0 after the change of z;, it follows that
P(z — 28, wp)y = 1 and P(wh,2"), = 0. On the other
hand, since Q(z + 27", wq) never changes a bit from 1
to 0, we have Q(z+27,wg); = Q(z+27 ,wg)e = 1 and
Q(wpy,27)i = Q(wgy, 27)¢ = 0. Thus, there is a different
bit between nodes of P(z — 2¢,wp) U P(w)p,2%) and
Qz+ 27 wg) UQ(wh,29).

Case 4: |Hj(z)| = 2 (for n — k = 2). This case is
impossible because |H! , (z)|=2 and j€ H? ,(z). O

Claim 2.6. Ific H,_, and j € H then P||Q.

n,n—k’

Proof. Note that ; = 2; = 1. There are two cases as
follows.

Case 1: Hj, ,(z) #0or [H, ,(2)] < (n—k)/2+\
From the paths constructed 1n Claim 1.1 (cf. Egs. (4)
and (5)), P starts with an edge labeled by —2¢ where
i’ = NEXT,(i), and ends with an edge labeled by —2°.
By contrast, from the paths constructed in Claim 1.2
(cf. Eqs (8), (9) and (10)), @ starts with an edge labeled
by —27', where j' = NEXT,(j), and ends with an edge
labeled by —27. Note that it is possible i’ = j or j' = i.

If j/ # i, then Q(x — 23'/,2]_' ) contains an edge with

label —2¢, denoted by w =2, w'. Since x; alters after
the change of z; in (), we have Q(z — 27" w)y =1 and
Q(w',27); = 0. On the other hand, since z;; has been
changed to 0 when P passes through the first edge,
we have P(z — 2,2"); = 0. Also, since z; remains
unchanged until P passes through the last edge, we
have P(z—2%,2%); = 1. This shows that every node of
P(z —2",2) has a bit different from nodes of Q(z —
27 w) U Q(w',27).

Case2 Hj, () = 0 and (n — k)/2 + X <
|H! ()] < n—k.Since |H} ,(z)| > (n—k)/2+ ),
there is a position £ € H! , () \ {i} such that z, = 1.
Let j/ = NEXT.(j). From the paths constructed in
Claim 1.2 (cf. Egs. (11) and (12)), @ starts with an
edge labeled by +2j/ or , and ends with an edge
labeled by —27. If j' # x, then j' = max H?_, (z) and
() must have passed through an edge with label *,
denoted by wg —— wg. For n —k > 2, from the
paths constructed in Claim 1.1 (cf. Eq. (6)), we have
NEXT, (i) = i and P has the label —2¢ in its first edge
and last edge. Note that P must have passed through
an edge with label *, denoted by wp N w'p. Since z;
has been changed to 0 when P passes through the first
edge, we have P(z — 2, wp); = 0 and P(w)p,2%); = 1.
Also, since P(z — 2%, wp) never changes a bit from 1
to 0 except the first edge, we have P(z — 2t wp)y =
1 and P(wP, 21), = 0. On the other hand, since

(1;+2J wq) never changes a bit from 1 to 0, we have

Qz+27 wg) = Q(x+27",wg), = 1 and Q(wQ,2J)
Q(wp,27); = 0. This shows that there is a different
bit between nodes of P(z — 2, wp) U P(w),2") and
Qr +27,wq) U Q(wy, 2).

For n — k = 2, from the paths constructed in
Claim 1.1 (cf. Eq. (6')), P starts with an edge la-
beled by —27, where i = max H} ,(z), and ends
with an edge labeled by —2‘. Since z; has been
changed to 0 when P passes through the first edge,
we have P(z — 2V,2%); = 0. Also, since x; remains
unchanged until P passes through the last edge, we
have P(z — 2¥,2%); = 1. On the other hand, since
Q(z + 27", wg) never changes a bit from 1 to 0, we
have Q(z 4+ 27", wq)i = Q(z + 27", wg)y = 1 and
Q(wgy,27)i = Qwg,27)ir = 0. This shows that there
is a different bit between nodes of P(z — 2",2¢) and
Qz+ 27, wg) UQ(wh,2%). O
Claim 2.7. If i € H,

_pand jeH then P||Q.

Proof. Note that x; = 1 and z; = 0. Let w be the
node adjacent to x in P. From the paths constructed in
Claim 1.1 (cf. Egs. (4), (5), (6) and (6")), we know that P
ends with an edge labeled by —2° and never changes
a bit in H) _,(z) from 0 to 1. Since j € H), _,,
we have P(w,2’); = 0. On the other hand, from
the paths constructed in Claim 1.2 (cf. Eq. (7)), we

have NEXT,(j) = j. Thus, Q has the label +27 in its
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first edge and the label —27 in its last edge. Since x;
has been changed to 1 when @ passes through the
first edge and then keeps unchanged until () passes
through the last edge, we have Q(z + 27,27); = 1.
Thus P(w,2%) N Q(z +27,27) = (. O

Claim 2.8. Ifi€ HY , and j € H then P||Q.

Proof. Note that z; = 0 and x; = 1. There are two
cases as follows.

Case 1: H},_(x) # 0 or [H)_y(x)| < (n—k)/2+ )
This 1mphes |H? ,(z)] = (n —k)/2 — . In this case,
Q is the same as that in Case 1 of Claim 2.6. We first
consider (n —k)/2 > |H?_,(x)] = (n — k)/2 — \. Let
i’ = NEXT4(¢). From the paths constructed in Claim 1.1
(cf. Egs. (1) and (2)), P starts with an edge labeled
by +21 or x, and ends with an edge labeled by —2'.
If ¢ # %, then 2y = 0 and P must have passed
through an edge with label *, denoted by w — w'.
Since z; has been changed to 1 when P passes
through the first edge, we have P(x + 27, w)y = 1
and P(w’,2%); = 0. Also, since z; remains unchanged
until P passes through the edge w —— w’, we have
P(z — 2%, w); = 0 and P(w’,2%); = 1. On the other
hand, since ) never changes a bit from 0 to 1, we
have Q(z —27",27); = Q(z —27",27)y = 0. Thus, every
node of P(z+2", w)UP(w',2%) has a bit different from
nodes of Q(z —27",27).

Next, we consider |[H? , (z)| > (n — k)/2. From the
paths constructed in Clann 1.1 (cf. Eq. (3)), we have
NEXT, (i) = i. Thus, P has the label +2 in its first edge
and the label —2¢ in its last edge. Since z; has been
changed to 1 when P passes through the first edge
and then keeps unchanged until P passes through the
last edge, we have P(z + 2¢,2"); = 1. On the other
hand, since @ never changes a bit from 0 to 1, we have
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Q(x—27",27); = 0. Thus P(z+2%,2)NQ(z—27",27) = 0.

Case2 Hj, (x) =0 and (n—k;/2+)\ <
i al)] € 1k Since [ (0) > (0= B2
it 11np11es that |H) . (z)] < (n —k)/2 — X and there

is a position ¢ e H! . (z) such that z, = 1. Let
i’ = NEXT, (7). From the paths constructed in Claim 1.1
(cf. Eqs (1) and (2)), P starts with an edge labeled
by +21 or %, and ends with an edge labeled by —2'.
If i # %, then zy = 0 and P must have passed
through an edge with label *, denoted by wp —— w.
Since |HY ,(z)] < (n — k)/2, the path Q is the same
as that in Case 2 of Claim 2.6. Let 5/ = NEXT,(j).
That is, Q starts with an edge labeled by +27" or x,
and ends with an edge labeled by —27. If j/ # x,
then j' = max H? , (z) > i and @ must have passed
through an edge with label *, denoted by wg —— weg.
Furthermore, if j/ > i, the path P(w),2%) contains

an edge with label —27" denoted by u 2w , and
the path Q(x + 2j/,wQ) contains an edge with label

+21, denoted by v =2 v'. It is clear that the bits in
positions ¢, j/ and ¢ for nodes in P are as follows:

P(z + 2" wp); = P(x + 2", wp);, = P@/,2"); =
P(wp,u)e=P(W/, 21)4—0 and P(wp,u); =P(u,2"); =
P(wp,u)jy =Pz +2° wp)g = 1. On the other hand,
the bits in positions 7, j' and ¢ for nodes in @ are as
follows: Q(z + 27',v); = Qwy,27)i = Qwg,27);r =
Qwh,2), = 0 and Q(v',wq); = Qz + 27 ,v); =

QW wgq) Q(x+2j/ v)e=Q(v',wq)¢=1. This show
that P(z + 27,20 N Q(x + 27, 27) = 0. 0
Claim 2.9. Ifi € H)_, and j € H) ,_,, then P||Q.

Proof. Note that 2; = z; = 0. The proof is the same as
that in Claim 2.7, except for the path P constructed
in Claim 1.1 for Egs. (1), (2) and (3). (|

Claim 2.10. If i € H, o g then PlQ.

Proof. Note that ; = 1 and z; = 0. Let w be the
node adjacent to = in P. From the paths constructed
in Claim 1.2 (cf. Egs. from (8) to (12)), P ends with
an edge labeled by —2' and never changes a bit in
H) , _i(z) from 0 to 1. Since j € H), ,, we have
P(w 2%); = 0. In this case, @ is the same as that in
Claim 2.7. Thus, we can show P(w, 2))NQ(x+27,27) =
() using a similar argument. U

pand j € H

n,n—

Claim 2.11. If i € H}_, and j = %, then P||Q.

Proof. Note that x; = 1. There are four cases as
follows.
Case 1: |H! ()] < (n — k)/2. This implies

|HY ()] > (n — k)/2, and thus there is a position
e H? . (z) such that z; = 0. From the paths
constructed in Claim 1.1 (cf. Egs. (4) and (5)), P starts
with an edge labeled by —27, where i = NEXT, (i),
and ends with an edge labeled by —2°. Also, from the
paths constructed in Claim 1.3 (cf. Egs. (13) and (16)),
@ has the label * in its first edge and last edge. Since
P(z—2",2%) never changes a bit from 0 to 1, we have
P(z—2",2"), = 0. On the other hand, since z, has been
changed to 1 when @ passes through the first edge
and then keeps unchanged until @) passes through the
last edge, we have Q(z @ (2" % —1),2"F — 1), = 1.
Thus, P(x —24,2) N Q(z @ (2" —1),2"7F — 1) = 0.
Case 2: (n—k)/2 < |H, k( )| < (n—k)/2+ A. This
implies (n —k)/2— X < | O (z)] < (n—k)/2. In this
case, P is the same as that described in Case 1. Also,
from the paths constructed in Claim 1.3 (cf. Egs. (14)
and (17)), Q starts with an edge labeled by +27 ', where
j/ =max H)_,(z), and ends with an edge labeled by
%. Since P(x — 27 ,2') never changes a bit from 0 to 1,
we have P(z —2%,2%),, = 0. On the other hand, since
z; has been changed to 1 when @ passes through the
first edge and then keeps unchanged until () passes
through the last edge, we have Q(z+27",2" % —1); =
1. Thus, P(z —2°,2") N Q(z + 27,27 % — 1) = ).
Case3: H! ,(x)=0and|H! ,(z)| > (n—k)/2+\.

n,n—k

This implies |H70L_k(x)| < (n—k)/2— A, and thus there



isaposition ¢ € H! , (x)\{i} such thatz, = 1. Let j' =
NEXT, (7). From the paths constructed in Claim 1.3 (cf.
Egs. (17) and (18)), @ starts with an edge labeled by
427" or %, and ends with an edge labeled by *. For
n—k > 2, from the paths constructed in Claim 1.1 (cf.
Eq. (6)), we have NEXT,(i) = i and P has the label
—2% in its first edge and last edge. Note that P must
have passed through an edge with label , denoted by
wp —> wp. Since x; has been changed to 0 when P
passes through the first edge, we have P(z—2%, wp); =
0 and P(w,2%); = 1. Moreover, since P(z — 2!, wp)
never changes a bit from 1 to 0 after the change of ;, it
follows that P(z—2%, wp), = 1 and P(w), 2%, =0.On
the other hand, since Q(z+27", 2" * 1) never changes
a bit from 1 to 0, we have Q(z + 27,27 % — 1); =
Qx + 21" on—k _ 1)¢ = 1. Thus, there is a different
bit between nodes of P(z — 2, wp) U P(w)p,2") and
Qz+27" 2"k —1),

For n — k = 2, from the paths constructed in
Claim 1.1 (cf. Eq (6)), we have 1€ H2 Thus, P starts
with an edge labeled by —2¢', where i’ = max H} ;(z),
and ends with an edge labeled by —2°. Since z; has
been changed to 0 when P passes through the first
edge, we have P(z — 2¢' 21);, = 0. On the other hand,
since Q(z + 27',2"% — 1) never changes a bit from
1 to 0, we have Q(z + 27,2 % — 1)y = 1. Thus,
P(z—2",2NQ(z + 27,27 F —1) = 0.

Cased: M, ,(x) #0and [H) _,(x)] > (n—Fk)/2+\.
This implies |H? , (z)| < (n—k)/2— . In this case, P
is the same as that described in Case 3. From the paths
constructed in Claim 1.3 (cf. Eq. (15)), @ starts with
an edge labeled by —2/', where j’ = max H!(z), and
ends with an edge labeled by . For n — k > 2, since
H) . . # 0, we have j' > i. By the same argument
as that in Case 3, we can show that P(x — 2*, wp); =
P(w), 2%, = 0 and P(w)p,2); = P(x — 2, wp), = 1.
On the other hand, since Q(x — 21" on=k _ 1) never
changes a bit from 1 to 0in H! , ( ) we have Q(x —
21" on—k _ 1), = Q(z — 2/, 2"~% —1); = 1. This shows
that every node of P(z — 2%, wp) U P(w),2%) has a bit
different from nodes of Q(x —27",2"% —1).

For n — k = 2, by the same argument as that in
Case 3, we have P(z — 27,2); = 0. Since H} ,,_, #
(), we have j' > i’. On the other hand, since Q(z —
27, on=k 1) does not contain an edge with label —
we have Q(z— 21" 9n—k _1),, = 1. Thus, P(z—2" 21)
Qz—27 2n~F —1) = 0. O

Claim 2.12. Ifi € H,)_, and j = x, then P||Q.

Proof. Note that z; = 0. There are four cases as
follows.
Case 1: |[HY_, (z)| > (n—k)/2. Since |H?_,(z)| > 2,

there is a p051t10n ¢e H? ,(x)\{i} such that z, = 0.
In this case, NEXT, (i) = i. From the paths constructed
in Claim 1.1 (cf. Eq. (3)), P has the label +2' in its
first edge and the label —2% in its last edge. Also, from
the paths constructed in Claim 1.3 (cf. Egs. (13) and

(16)), @ has the label * in its first edge and last edge.
Since P(z + 2%,2%) never changes a bit from 0 to 1
after the change of z;, we have P(z + 2°,2"), = 0.
On the other hand, since x;, has been changed to 1
when () passes through the first edge and then keeps
unchanged until ) passes through the last edge, we
have Q(z @ (2" % — 1),2"=% — 1), = 1. Thus, there
is a different bit between nodes of P(z + 2¢,2%) and
Qx @ (2 F —1),2nF —1).

Case 22 H) ) #00 and (n —k)/2 — X <
[H (@) < (0= k)/2 or H}, 4(x) = 0 and 0 <
|HY ,(z)] < (n—k)/2. This 1rnphes that |H, k(x)| >
(n k)/2 > 1, and thus there is a position ¢ 6 1 (x
such that 2y = 1. Let ¢/ = NEXT,(i). From the paths
constructed in Claim 1.1 (cf. Ecls. (1) and (2)), P starts
with an edge labeled by +2" or %, and ends with
an edge labeled by —2°. If ¢/ # x, then P must
have passed through an edge with label %, denoted
by wp — w). Also, from the paths constructed in
Claim 1.3 (cf. E(is. (14) and (17)), @ starts with an edge
labeled by +27', where j/ = max H?_, (z), and ends
with an edge labeled by *. Note that j/ > i. Since
P(x + 2 wp) does not contain an edge with label
+27', we have P(x+2" wp) v =0and P(wp,2%),; = 1.
Moreover, since P(z + 2°,wp) never changes a bit
from 1 to 0, we have P(z + 2" wp), = 1 and
P(w,2%)¢ = 0. On the other hand, since x;, has been
changed to 1 when @ passes through the first edge
and then keeps unchanged until () passes through the
last edge, we have Q(z+27",2" % —1),;, = 1. Moreover,
since Q(x+27",2"~% —1) never changes a bit from 1 to
0, we have Q(x+27",2"%—1), = 1. Thus, there is a dif-
ferent bit between nodes of P(z + 2%, wp) U P(w), 27)
and Q(z + 27" 27k — 1),

Case 3: H), ,(z) # 0 and 0 < |H)_,(z)| < (n —

k)/2 — . In this case, P is the same as that described
in Case 2. From the paths constructed in Claim 1.3
(cf. Eq. (15)), @ starts with an edge labeled by —27',
where j' = max H} (z), and ends with an edge labeled
by *. Since H,) k( x) # 0, we have j' € H), , (z).
Moreover, since |H,_,(z)| > (n —k)/2+ A, there is a
posmon e H k(a;) such that zy = 1. Since P(x +
2" wp)e = 1, it implies P(w),2%), = 0. Also, since
Pz + 27 wp) never changes a bit from 1 to 0, we
have P(x + 27, wp);» = 1. On the other hand, since
xj has been changed to 0 when @ passes through the
first edge and then keeps unchanged until () passes
through the last edge, we have Q(z—27",2" % —1);, =
0. Moreover, since Q(z—27",2"~%—1) does not contain
an edge with label —2¢, we have Q(z — 2/',2"F —
1), =1 Thus, there is a different bit between nodes
of P(x+2",wp)UP(wp,2') and Q(x — 27,27~ F 1),

Case 4: H? ,(x) = 0. This case is impossible be-
cause i € H? (). O

E\

Claim 2.13. If i € H}! ,_, and j = x, then P||Q.



Proof. Since i € H,, ,_,(x), it implies H} , _,(z) # 0.
There are six cases as follows.

Case 1: H}, ,(x) # 0 and |H)_,(z)] < (n —k)/2.
This implies |H70, (@) > (n— )/2 and thus there is
a position ¢ € H? , (z) such that z, = 0. From the
paths Constructed in Claim 1.2 (cf. Eq (9)), P starts
with an edge labeled by —27, where i’ = max H} (),
and ends with an edge labeled by —2¢. Also, from
the paths constructed in Claim 1.3 (cf. Eq. (13)), @
has the label = in its first edge and last edge. Since
P(z—2",2%) never changes a bit from 0 to 1, we have
P(z—2",2%), = 0. On the other hand, since z; has been
changed to 1 when @ passes through the first edge
and then keeps unchanged until @) passes through the
last edge, we have Q(z @ (2" 7% —1),2" % — 1), = 1.
Thus, P(z — 2,2 NQ(z @ (2% —1),2" % — 1) = 0.
Case 2: H'Lln k( ) = (Z) and |H711—k(x)| < (n - k)/2
This implies |H, _,(x)| > (n — k)/2. In this case, P is
a path constructed in Claim 1.2(cf. Egs. (8) and (10))
and () is a path constructed in Claim 1.3 (cf. Eq. (13)).
The same argument as that in Case 1 shows that P||Q.

Case 3: H, ,(z) #0and (n—k)/2 <|H, ,(z)| <
(n —k)/2+ \. It implies (n — k)/2 — A < |HY_, ()| <
(n—k)/2. In this case, P is the same as that described
in Case 1. From the paths constructed in Claim 1.3 (cf.
Eq (14)), Q starts with an edge labeled by 421", where
j =maxH?_,(x ) and ends with an edge labeled by
*. Since P(m — 9 22) never changes a bit from 0 to 1,
we have P(z —2%,2%);, = 0. On the other hand, since
xj has been changed to 1 when @ passes through the
first edge and then keeps unchanged until ) passes

through the last edge, we have Q(x+27/", 2"~ % — 1) =
1. Thus, P(z — 2", 21) N Q(x + 29,27 F — ) =0.
Case 4: H}, ,(z)=0and (n—k)/2 <|H, ()] <

(n—k)/2+ . This implies (n—k)/2— X < |H @) <
(n — k)/2. In this case, P is a path constructed in
Claim 1.2 (cf. Eq. (10)) and @ is a path constructed
in Claim 1.3 (cf. Eq. (14)). The same argument as that
in Case 3 shows that P||Q.

Case 5: HY, _,(v) £ 0 and [H!_,(2)| > (n—k)/2+X.
This implies |HO_, (z)| < (n — k)/2 — X. From the
paths constructed in Claim 1.2 (cf. Eq (9)), P starts
with an edge labeled by 27, where 7/ = max H}(z),
and ends with an edge labeled by —2°. Since z;
has been changed to 0 when P passes through the
first edge, we have P(x — 2,2"); = 0. Also, since
x; remains unchanged until P passes through the
last edge, we have P(z — 27,2"); = 1. On the other
hand, from the paths constructed in Claim 1.3 (cf.
Eq. (15)), Q starts with an edge labeled by —27', where
j' = maxl(z), and ends with an edge labeled by x.
Note that it is possible j/ = 4. If j/ # i, it is clear
that Q(z — 2/,2"~% — 1) contains an edge with label
—2¢, denoted by w ~2, W', Since ;o alters after the
change of z; in Q, we have Q(z — 2/, w); = 1 and
Q(w', 2" F — 1)1 _ 0. This shows that every node
of P(z — 2",2%) has a bit different from nodes of

Qe — 2 w) U Q' 2 * - 1),

Case 61 Hl, (r) =0 and [H!_(x)] > (n—k)/2+
A Th1s 1rnphes |H? ,(2)] < (n - k)/2 — A. Since
|H! | (z )| > 1, there is a position ¢ € H} , (z) such
that ¢ = 1. In this case, @) is the same as that
described in Case 5. Since z;; has been changed to
0 when () passes through the first edge and then
keeps unchanged until @ passes through the last
edge, we have Q(z — 21" gn—k _ 1), = 0. Also, since
Q(x — 27",27=% — 1) never changes z, to 0, we have
Q(z —27",27"% — 1), = 1. Let i’ = NEXT,(i). From
the paths constructed in Claim 1.2 (cf. Egs. (11) and
(12)), P starts with an edge labeled by +2¢ or *, and
ends with an edge labeled by —2%. If i # x, then
i’ = max H® ,(z) and P must have passed through
an edge with label , denoted by w — w'. Since
P(z+2",w) never changes a bit from 1 to 0, we have
P(z+2",w), =1 and P(w',2") contains an edge with
label —27". This further implies that P(z+2",w); = 1
and P(w’,2%), = 0. This shows that every node of
P(z+2",w)UP(w',2") has a bit different from nodes
of Q(x — 27 ,2nF —1). a

Claim 2.14. If i € H)) ,_, and j = *, then P||Q.

Proof. Note that z; = 0. From the paths constructed
in Claim 1.2 (cf. Eq. (7)), we have NEXT,(i) = i.
Thus, P has the label +2° in its first edge and the
label —2 in its last edge. Since z; has been changed
to 1 when P passes through the first edge and then
keeps unchanged until P passes through the last edge,
we have P(z + 2¢,2%); = 1. On the other hand, let
w be the node adjacent to z in (. From the paths
constructed in Claim 1.3 (cf. Egs. from (13) to (18)), @
never changes a bit in H)) ,_,(z) from 0 to 1. Since
i € H), (x), we have Q(w,2""* —1); = 0. Thus,
Pz +202)NQ(w, 2" % - 1) = 0. O



