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APPENDIX A
PROOFS OF CLAIMS IN THEOREM 1.

In the following proofs, we assume that H1
n(x) =

{fs−1, fs−2, . . . , f0} with fs−1 > fs−2 > · · · > f0 and
H0

n(x) = {gt−1, gt−2, . . . , g0} with gt−1 > gt−2 > · · · >
g0, where all index arithmetics of fp are taken modulo
s, and all index arithmetics of gq are taken modulo t.

Claim 1.1. If x matches one of the conditions in Eqs. (1),
(2), (3), (4), (5), (6) (or (6′)), then there is a unique path
that connects x and 0 in Ti.

Proof. Let j = NEXTx(i) and suppose x 6= 0. There are
the following scenarios:

Case 1: i ∈ H1
n−k(x), |H1

n−k(x)| 6 (n− k)/2 + λ and
H1

i (x) = ∅ (cf. Eq. (5)). In this case, j = maxH1
n(x) =

fs−1. Since xj = 1, x is adjacent to x−2j in Ti. Let y =
x−2j . Clearly, H1

n(y) = {fs−2, fs−3, . . . , f0}. Note that
|H1

n−k(y)| 6 |H1
n−k(x)| 6 (n − k)/2 + λ and H1

i (y) =
H1

i (x) = ∅. Thus, if H1
n(y) = ∅, then y = 0. In this

case, x −2
j

−→ 0 is the desired path connecting x and 0
in Ti. Otherwise, y is still in the situation of Case 1.
By the same argument we know that y is adjacent to
the node y − 2j

′
in Ti, where j′ = NEXTy(i) = fs−2.

Repeat this process until the path passes through the
node 2f0 in Ti. Therefore, we can find the following

unique path that connects x and 0 in Ti: P : x
−2fs−1

−→
(x − 2fs−1)

−2fs−2

−→ (x − 2fs−1 − 2fs−2)
−2fs−3

−→ · · · −2
f1

−→
(2f0)

−2f0−→ 0.

Case 2: i ∈ H1
n−k(x), |H1

n−k(x)| 6 (n − k)/2 + λ
and H1

i (x) 6= ∅ (cf. Eq. (4)). In this case, since xi = 1
and H1

i (x) 6= ∅, we suppose i = fp for some 0 <
p 6 s − 1. By Eq. (4), j = maxH1

i (x) = fp−1. Since
xj = 1, x is adjacent to x − 2j in Ti. Let y = x − 2j .
Clearly, H1

i (y) = {fp−2, fp−3, . . . , f0} and |H1
n−k(y)| <

|H1
n−k(x)| 6 (n− k)/2 +λ. Thus, if H1

i (y) 6= ∅, we can
repeat this process until the path passes through the
node w = x−

∑p−1
h=0 2fh . Let Q be the path described

as follows: Q : x
−2fp−1

−→ (x− 2fp−1)
−2fp−2

−→ (x− 2fp−1 −
2fp−2)

−2fp−3

−→ · · · −2
f0

−→ w. Now, it is easy to check that
|H1

n−k(w)|= |H1
n−k(x)|−p 6 (n−k)/2+λ and H1

i (w) =
∅. Thus, w is in the situation of Case 1. Let P be the

path connecting w and 0. Therefore, we can find the
unique path Ti[x, 0] by concatenating Q and P .

Case 3: i ∈ H0
n−k(x) and |H0

n−k(x)| > (n− k)/2 (cf.
Eq. (3)) In this case, we have j = i. Since xj = 0, x
is adjacent to x + 2j in Ti. Let z = x + 2j . Clearly,
zi = x̄i = 1 and i ∈ H1

n−k(z). Also, |H0
n−k(x)| > (n −

k)/2 implies |H1
n−k(x)| < (n − k)/2. Thus, we have

|H1
n−k(z)| = |H1

n−k(x)| + 1 6 ((n − k)/2 − 0.5) + 1 6
(n−k)/2+λ, where λ = 0.5 or λ = 1. This shows that
z is in the situation of Case 1 for H0

i (z) 6= ∅ or Case 2
for H0

i (z) = ∅. No matter what the situation does z
have, let P be the path connecting z and 0. Therefore,
we can find the unique path Ti[x, 0] by concatenating

x
+2j−→ z and P .
Case 4: i ∈ H0

n−k(x), |H0
n−k(x)| 6 (n − k)/2, and

H0
i (x) = ∅ (cf. Eq. (2)). In this case, we have j =
∗. Let z = x ⊕ (2n−k − 1) be the node adjacent to
x in Ti. Since i ∈ H0

n−k(x), it implies zi = x̄i = 1,
and thus i ∈ H1

n−k(z). Clearly, H1
i (z) = H0

i (x) = ∅.
Moreover, |H0

n−k(x)| 6 (n− k)/2 implies |H1
n−k(z)| =

|H0
n−k(x)| < (n− k)/2 + λ. This shows that z is in the

situation of Case 1. Let P be the path connecting z
and 0. Therefore, we can find the unique path Ti[x, 0]

by concatenating x
∗−→ z and P .

Case 5: i ∈ H0
n−k(x), |H0

n−k(x)| 6 (n − k)/2, and
H0

i (x) 6= ∅ (cf. Eq. (1)). In this case, since xi = 0,
we suppose i = gq for some 0 < q 6 t − 1. Since
H0

i (x) 6= ∅, by Eq. (1) we have j = maxH0
i (x) = gq−1.

Since xj = 0, x is adjacent to x+2j in Ti. Let y = x+2j .
Clearly, H0

i (y) = {gq−2, gq−3, . . . , g0} and |H0
n−k(y)| =

|H0
n−k(x)| − 1 6 (n− k)/2. Thus, if H0

i (y) 6= ∅, we can
repeat this process until the path passes through the
node w = x+

∑q−1
h=0 2gh . Let Q be the path described

as follows: Q : x
+2gq−1

−→ (x+ 2gq−1)
+2gq−2

−→ (x+ 2gq−1 +

2gq−2)
+2gq−3

−→ · · · +2g0−→ w. Now, it is easy to check that
H0

n(w) = {gt−1, gt−2, . . . , gq} and H0
i (w) = ∅. Thus,

wi = xi = 0 and i ∈ H0
n−k(w). Since |H0

n−k(w)| =
|H0

n−k(x)| − q 6 (n− k)/2 and H0
i (w) = ∅, w is in the

situation of Case 4. Let P be the path connecting w
and 0. Therefore, we can find the unique path Ti[x, 0]
by concatenating Q and P .

Case 6: i ∈ H1
n−k(x) and |H1

n−k(x)| > (n− k)/2 + λ
(cf. Eq. (6)). In this case, we have n− k > 2 and j = i.
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Since xj = 1, x is adjacent to x − 2j in Ti. Let z =
x−2j . Clearly, zi = x̄i = 0 and i ∈ H0

n−k(z). Moreover,
|H1

n−k(x)| > (n − k)/2 + λ implies |H0
n−k(x)| < (n −

k)/2− λ. Thus, we have |H0
n−k(z)| = |H0

n−k(x)|+ 1 6
((n−k)/2−λ−0.5)+1 6 (n−k)/2. This shows that z is
in the situation of Case 4 for H0

i (z) = ∅ or Case 5 for
H0

i (z) 6= ∅. No matter what the situation does z have,
let P be the path that connects z and 0 in Ti. Thus,
we obtain the unique path Ti[x, 0] by concatenating

x
−2j−→ z and P .
Case 7: i ∈ H1

2 (x) and |H1
2 (x)| = 2 (cf. Eq. (6′)).

In this case, we have n − k = 2 and λ = 0.5. Since
x0 = x1 = 1 and either i = 1 or i = 0, by Eq. (6′) we
have j = maxH1

2−i = i⊕ 1. Since xj = 1, x is adjacent
to x− 2j in Ti. Let z = x− 2j . Clearly, zi = xi = 1 and
i ∈ H1

n−k(z). Moreover, |H1
n−k(z)| = |H1

n−k(x)| − 1 =
1 < (n − k)/2 + λ and H1

i (z) = ∅. This shows that z
is in the situation of Case 1. Let P be the path that
connects z and 0 in Ti. Thus, we obtain the unique

path Ti[x, 0] by concatenating x
−2j−→ z and P .

As a result, this completes the proof. �

Claim 1.2. If x matches one of the conditions in Eqs. (7),
(8), (9), (10), (11), (12), then there is a unique path that
connects x and 0 in Ti.

Proof. Let j = NEXTx(i) and suppose x 6= 0. There are
the following scenarios:

Case 1: i ∈ H1
n,n−k(x) and H1

i (x) = ∅ (cf. Eq. (8)).
In this case, we have j = maxH1

n(x) = fs−1. Since
H1

i (x) = ∅, a proof similar to that of Case 1 in
Claim 1.1 shows that there is a unique path connecting
x and 0 in Ti.

Case 2: i ∈ H1
n,n−k(x), H1

i,n−k(x) = ∅ and 0 <
|H1

n−k(x)| 6 (n − k)/2 + λ (cf. Eq. (10)). In this case,
since i ∈ H1

n,n−k(x) and H1
n−k(x) 6= ∅, by Eq. (10) we

suppose j = maxH1
n−k(x) = fp for some 0 6 p < s−1.

A proof similar to that of Case 2 in Claim 1.1 shows
that there is a unique path connecting x and 0 in Ti.

Case 3: i ∈ H1
n,n−k(x), H1

i,n−k(x) = ∅, and
|H1

n−k(x)| = n − k (cf. Eq. (12)). In this case, we
have j = ∗. Let z = x ⊕ (2n−k − 1) be the node
adjacent to x in Ti. Since i ∈ H1

n,n−k(x), it implies
zi = xi = 1, and thus i ∈ H1

n,n−k(z). Moreover,
H1

i,n−k(z) = H1
i,n−k(x) = ∅, and |H1

n−k(x)| = n − k
implies H1

n−k(z) = ∅. Thus, H1
i (z) = H1

i,n−k(z) ∪
H1

n−k(z) = ∅. This shows that z is in the situation
of Case 1. Let P be the path connecting z and 0.
Therefore, we can find the unique path Ti[x, 0] by
concatenating x

∗−→ z and P .
Case 4: i ∈ H1

n,n−k(x), H1
i,n−k(x) = ∅, and (n −

k)/2+λ < |H1
n−k(x)| < n−k (cf. Eq. (11)). In this case,

since |H1
n−k(x)| < n − k, it implies H0

n−k(x) 6= ∅. By
Eq. (11), we suppose j = maxH0

n−k(x) = gq for some
0 6 q 6 t−1. Since xj = 0, x is adjacent to x+2j in Ti.
Let y = x+2j . Clearly H0

n−k(y) = {gq−1, gq−2, . . . , g0}.
Moreover, H1

i,n−k(y) = H1
i,n−k(x) = ∅ and (n− k)/2 +

λ < |H1
n−k(x)| < |H1

n−k(y)| 6 n − k. If |H1
n−k(y)| 6=

n − k, then y is still in the situation of Case 4. By
the same argument, we can repeat this process until
the path passes through the node w = x +

∑q
h=0 2gh .

Let Q be the path described as follows: Q : x
+2gq−→

(x+2gq )
+2gq−1

−→ (x+2gq +2gq−1)
+2gq−2

−→ · · · +2g0−→ w. Now,
it is easy to check that H0

n(w) = {gt−1, gt−2, . . . , gq+1}.
Thus, H0

n−k(w) = ∅ and |H1
n−k(w)| = n−k. Moreover,

i ∈ H1
n,n−k(w) and H1

i,n−k(w) = H1
i,n−k(x) = ∅. Thus,

w is in the situation of Case 3. Let P be the path
connecting w and 0. Therefore, we can find the unique
path Ti[x, 0] by concatenating Q and P .

Case 5: i ∈ H1
n,n−k(x) and H1

i,n−k(x) 6= ∅ (cf. Eq. (9)).
In this case, since xi = 1 and H1

i,n−k(x) 6= ∅, by Eq. (9)
we suppose j = maxH1

i,n−k(x) = fp for some 0 6 p <
s − 1. A proof similar to that of Case 2 in Claim 1.1
shows that there is a path Q connecting x and a node
w = x −

∑p
h=r 2fh such that H1

i,n−k(w) = ∅, where
0 6 r 6 p. If r = 0, then H1

i (w) = ∅, and thus w
is in the situation of Case 1. Otherwise, H1

n−k(x) 6=
∅, we check the range of H1

n−k(x) as follows: If 0 <
|H1

n−k(w)| 6 (n−k)/2+λ, then w is in the situation of
Case 2; If (n−k)/2+λ < |H1

n−k(w)| < n−k, then w is
in the situation of Case 4; If |H1

n−k(w)| = n− k, then
w is in the situation of Case 3. No matter what the
situation does w have, let P be the path connecting w
and 0. Therefore, we can find the unique path Ti[x, 0]
by concatenating Q and P .

Case 6: i ∈ H0
n,n−k(x) (cf. Eq. (7)). In this case, we

have j = i. Since xj = 0, x is adjacent to x + 2j in
Ti. Let z = x + 2j . Clearly, i ∈ H1

n,n−k(z). Thus, z
is possible in the situation of any above-mentioned
case. Let P be the path that connects z and 0. Thus,
we obtain the unique path Ti[x, 0] by concatenating

x
+2j−→ z and P .
As a result, this completes the proof. �

Claim 1.3. If x matches one of the conditions in Eqs. (13),
(14), (15), (16), (17), (18), then there is a unique path that
connects x and 0 in Ti.

Proof. Let j = NEXTx(i) and suppose x 6= 0. There are
the following scenarios:

Case 1: i = ∗, H1
n,n−k(x) = ∅, and H0

n−k(x) = ∅
(cf. Eq. (18)). In this case, we have j = ∗. Let z =
x ⊕ (2n−k − 1) be the node adjacent to x in Ti. Since
H1

n,n−k(x) = ∅ and H0
n−k(x) = ∅, it implies z = 0. In

this case, x ∗−→ 0 is the desired path.
Case 2: i = ∗, H1

n,n−k(x) = ∅, and 0 < |H0
n−k(x)| 6

(n − k)/2 (cf. Eq. (17)). Recall that we regard ‘∗’
as the smallest element in H0

n−k(x) ∪ {∗}. In this
case, since H0

n−k(x) 6= ∅, by Eq. (17), we suppose
j = maxH0

n−k(x) = gq for some 0 6 q 6 t−1. A proof
similar to that of Case (4) in Claim 1.2 shows that there
is a path Q connecting x and a node w = 2n−k − 1
such that H0

n−k(w) = ∅. Now, w is in the situation of
Case 1. Therefore, we can find the unique path Ti[x, 0]
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by concatenating Q and w
∗−→ 0.

Case 3: i = ∗, H1
n,n−k(x) = ∅, and |H0

n−k(x)| >
(n−k)/2 (cf. Eq. (16)). In this case, we have j = ∗. Let
z = x⊕(2n−k−1) be the node adjacent to x in Ti. Since
x 6= 0 and H1

n,n−k(x) = ∅, it implies |H1
n−k(x)| > 0

(i.e., |H0
n−k(x)| < n − k). Also, n − k > |H0

n−k(x)| >
(n − k)/2 implies 0 < |H0

n−k(z)| < (n − k)/2. More-
over, H1

n,n−k(z) = H1
n,n−k(x) = ∅. Thus, z is in the

situation of Case 2. Let P be the path connecting z
and 0. Therefore, we obtain the unique path Ti[x, 0]

by concatenating x
∗−→ z and P .

Case 4: i = ∗, H1
n,n−k(x) 6= ∅, and |H0

n−k(x)| < (n−
k)/2− λ (cf. Eq. (15)). In this case, since |H0

n−k(x)| <
(n−k)/2−λ, it implies |H1

n−k(x)| > (n−k)/2+λ > 1.5.
Note that if n−k = 2, then |H1

2 (x)| = 2, and thus x0 =
x1 = 1. Suppose H1

n,n−k(x) = {fs−1, fs−2, . . . , fp}
for some 2 6 p 6 s − 1. By Eq. (15), we have
j = maxH1

n(x) = fs−1. Since xj = 1, x is adjacent
to x − 2j in Ti. Let y = x − 2j . Clearly, H1

n,n−k(y) =
{fs−2, fs−3, . . . , fp} and |H0

n−k(y)| = |H0
n−k(x)| < (n−

k)/2 − λ. If H1
n,n−k(y) 6= ∅, y is still in the situation

of Case 4. By the same argument, we can repeat this
process until the path passes through the node w =
x−

∑s−1
h=p 2fh . Let P be the path described as follows:

P : x
−2fs−1

−→ (x−2fs−1)
−2fs−2

−→ (x−2fs−1−2fs−2)
−2fs−3

−→
· · · −2

fp

−→ w. Now, it is easy to check H1
n,n−k(w) = ∅

and |H0
n−k(w)| = |H0

n−k(x)| < (n − k)/2 − λ. Thus, if
H0

n−k(w) = ∅, we have w = 2n−k − 1 and it is in the
situation of Case 1. Therefore, we obtain the desired
path by concatenating P and w

∗−→ 0. Otherwise,
w is in the situation of Case 2. Let Q be the path
connecting w and 0. Therefore, we can find the unique
path Ti[x, 0] by concatenating P and Q.

Case 5: i = ∗, H1
n,n−k(x) 6= ∅, and (n − k)/2 − λ 6

|H0
n−k(x)| 6 (n− k)/2 (cf. Eq. (14)). In this case, since

|H0
n−k(x)| > (n−k)/2−λ > 0.5, we have H0

n−k(x) 6= ∅.
Note that if n − k = 2, then 0.5 = 1 − λ 6 |H0

2 (x)| 6
1, and thus x0 ⊕ x1 = 1. By Eq. (14), we suppose
j = maxH0

n−k(x) = gq for some 0 6 q 6 t − 1. A
proof similar to that of Case (4) in Claim 1.2 shows
that there is a path Q connecting x and a node w
such that |H0

n−k(w)| < (n− k)/2−λ. Now, w is in the
situation of Case 4. Let P be the path connecting w
and 0. Therefore, we can find the unique path Ti[x, 0]
by concatenating Q and P .

Case 6: i = ∗, H1
n,n−k(x) 6= ∅, and |H0

n−k(x)| > (n−
k)/2 (cf. Eq. (13)). In this case, we have j = ∗. Let
z = x ⊕ (2n−k − 1) be the node adjacent to x in Ti.
Since |H0

n−k(x)| > (n − k)/2, it implies |H0
n−k(z)| <

(n − k)/2. Since H1
n,n−k(z) = H1

n,n−k(x) 6= ∅, z is in
the situation of Case 4 or Case 5. No matter what the
situation does z have, let P be the path connecting z
and 0. Therefore, we obtain the unique path Ti[x, 0]

by concatenating x
∗−→ z and P .

As a result, this completes the proof. �

APPENDIX B
PROOFS OF CLAIMS IN THEOREM 2.
The following lemmas shows the independency of
spanning trees. For convenience, if P is a path and
u, v ∈ V (P ), we use P (u, v) to denote the subpath of
P from u to v. Also, we write P (u, v)i = b, where
0 6 i 6 n − 1 and b ∈ {0, 1}, to mean that xi = b for
every node x = xn−1xn−2 · · ·x0 in P (u, v).

Claim 2.1. If i, j ∈ H1
n−k, then P ||Q.

Proof. Without loss of generality, we suppose n−k >
i > j > 0. Note that xi = xj = 1. There are three cases
as follows.

Case 1: |H1
n−k(x)| 6 (n − k)/2 + λ. From the paths

constructed in Claim 1.1 (cf. Eqs. (4) and (5)), we
know that P starts with an edge labeled by −2i

′
,

where i′ = NEXTx(i), and ends with an edge labeled
by −2i. Since xi′ = 1 and it has been changed to
0 when P passes through the first edge, we have
P (x− 2i

′
, 2i)i′ = 0. Also, since xi remains unchanged

until P passes through the last edge, we have P (x−
2i
′
, 2i)i = 1. Similarly, Q starts with an edge labeled

by −2j
′
, where j′ = NEXTx(j), and ends with an

edge labeled by −2j . Clearly, the path Q(x − 2j
′
, 2j)

contains an edge with label −2i, denoted by w −2
i

−→ w′.
Since xi′ alters after the change of xi in Q, we have
Q(x − 2j

′
, w)i′ = 1 and Q(w′, 2j)i = 0. As a result,

every node of P (x − 2i
′
, 2i) has a bit different from

nodes of Q(x− 2j
′
, w) ∪Q(w′, 2j).

Case 2: |H1
n−k(x)| > (n − k)/2 + λ (for n − k > 2).

In this case, we have NEXTx(i) = i and NEXTx(j) = j.
Thus, P (respectively, Q) has the label −2i (respec-
tively, −2j) in its first edge and last edge. Since
n − k > 2, we have |H1

n−k(x)| > 3, and there is
a position ` ∈ H1

n−k(x) \ {i, j} such that x` = 1.
From the paths constructed in Claim 1.1 (cf. Eq. (6)),
we know that P and Q must have passed through
an edge with label ∗, denoted by wP

∗−→ w′P and
wQ

∗−→ w′Q, respectively. Since xi has been changed
to 0 when P passes through the first edge, we have
P (x−2i, wP )i = 0 and P (w′P , 2

i)i = 1. Moreover, since
P (x−2i, wP ) never changes a bit from 1 to 0 after the
change of xi, it follows that P (x − 2i, wP )` = 1 and
P (w′P , 2

i)` = 0. On the other hand, since Q(x−2j , wQ)
does not contain an edge with label −2i, we have
Q(x − 2j , wQ)i = 1 and Q(w′Q, 2

j)i = 0. Again, since
Q(x − 2j , wQ) never changes a bit from 1 to 0 after
the change of xj , it follows that Q(x − 2j , wQ)` = 1
and Q(w′Q, 2

j)` = 0. As a result, every node of
P (x−2i, wP )∪P (w′P , 2

i) has a bit different from nodes
of Q(x− 2j , wQ) ∪Q(w′Q, 2

j).
Case 3: |H1

2 (x)| = 2 (for n − k = 2). From the
paths constructed in Claim 1.1 (cf. Eq. (6′)), we have
|H1

2 (x)| = 2. Since i > j, we have i = 1 and j = 0. Let
i′ = maxH1

2−i(x) = 0 and j′ = maxH1
2−j(x) = 1. The

proof is similar to Case 1. �
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Claim 2.2. If i, j ∈ H0
n−k, then P ||Q.

Proof. Without loss of generality, we suppose n−k >
i > j > 0. Note that xi = xj = 0. There are two cases
as follows.

Case 1: |H0
n−k(x)| 6 (n − k)/2. From the paths

constructed in Claim 1.1 (cf. Eqs. (1) and (2)), P starts
with an edge labeled by +2i

′
, where i′ = NEXTx(i),

and ends with an edge labeled by −2i. Similarly,
Q starts with an edge labeled by +2j

′
, where j′ =

NEXTx(j), and ends with an edge labeled by −2j .
Moreover, P and Q can be described as follows:

P : x
+2i
′

−→ (x+2i
′
)→· · ·→u +2j−→u′

+2j
′

−→ u′′→· · ·→wP
∗−→

w′P →· · ·→ (2i)
−2i−→ 0 and Q : x

+2j
′

−→ (x+ 2j
′
)→· · ·→

wQ
∗−→w′Q→· · ·→v

−2i−→v′
−2i
′

−→v′′→· · ·→(2j)
−2j−→0. Note

that xi′ = 0 and it is possible i′ = j or j′ = ∗ (we
ignore the relevant subpaths in this case). If j′ 6= ∗,
then xj′ = 0. By carefully analyzing the alteration
of bits, the bits in positions i, i′, j and j′ for nodes
in P are as follows: P (x + 2i

′
, u)i = P (u′, u′)i =

P (u′′, wP )i =P (w′P , 2
i)i′=P (x+ 2i

′
, u)j =P (w′P , 2

i)j =
P (x + 2i

′
, u)j′ = P (u′, u′)j′ = P (w′P , 2

i)j′ = 0 and
P (w′P , 2

i)i =P (x+ 2i
′
, u)i′=P (u′, u′)i′=P (u′′, wP )i′=

P (u′, u′)j =P (u′′, wP )j =P (u′′, wP )j′ = 1.
Similarly, the bits in positions i, i′, j and j′ for nodes

in Q are as follows: Q(x + 2j
′
, wQ)i = Q(v′, v′)i =

Q(v′′, 2j)i = Q(x + 2j
′
, wQ)i′ = Q(x + 2j

′
, wQ)j =

Q(w′Q, v)j′ = Q(v′, v′)j′ = Q(v′′, 2j)j′ = 0 and
Q(w′Q, v)i = Q(w′Q, v)i′ = Q(v′, v′)i′ = Q(v′′, 2j)i′ =

Q(w′Q, v)j =Q(v′, v′)j =Q(v′′, 2j)j =Q(x + 2j
′
, wQ)j′ =

1.
We observe that only P (u′, u′) and Q(v′, v′) have the

same setting in these bits. Since |H0
n−k(x)| 6 (n−k)/2,

it implies |H1
n−k(x)| > (n − k)/2, and thus there is

a position ` ∈ H1
n−k(x) such that x` = 1. Since x`

remains unchanged until P passes through the edge
with label ∗, we have P (u′, u′)` = 1. By contrast, x`
has been changed to 0 when Q passes through the
edge with label ∗, we have Q(v′, v′)` = 0. This shows
that P (x+ 2i

′
, 2i) ∩Q(x+ 2j

′
, 2j) = ∅.

Case 2: |H0
n−k(x)| > (n− k)/2. From the paths con-

structed in Claim 1.1 (cf. Eq. (3)), we have NEXTx(i) =
i and NEXTx(j) = j. Thus, P (respectively, Q) has the
label +2i (respectively, +2j) in its first edge and the
label −2i (respectively, −2j) in its last edge. Since xi
has been changed to 1 when P passes through the
first edge, we have P (x + 2i, 2i)i = 1. On the other
hand, since Q(x + 2j , 2j) never changes a bit from 0
to 1 after the change of xj , we have Q(x+2j , 2j)i = 0.
Thus, P (x+ 2i, 2i) ∩Q(x+ 2j , 2j) = ∅. �

Claim 2.3. If i, j ∈ H1
n,n−k, then P ||Q.

Proof. Without loss of generality, we suppose n > i >
j > n−k. Since i, j ∈ H1

n,n−k(x), we have H1
i,n−k(x) 6=

∅. From the paths constructed in Claim 1.2 (cf. Eq. (9)),
we know that P starts with an edge labeled by −2i

′
,

where i′ = maxH1
i (x), and ends with an edge labeled

by −2i. Note that it is possible i′ = j. Since xi′ = 1
and it has been changed to 0 when P passes through
the first edge, we have P (x− 2i

′
, 2i)i′ = 0. Also, since

xi remains unchanged until P passes through the last
edge, we have P (x− 2i

′
, 2i)i = 1. There are two cases

as follows.
Case 1: H1

j,n−k(x) 6= ∅ or |H1
n−k(x)| 6 (n− k)/2 +λ.

From the paths constructed in Claim 1.2 (cf. Eqs. (8),
(9) and (10)), Q starts with an edge labeled by −2j

′
,

where j′ = NEXTx(j), and ends with an edge labeled
by −2j . Clearly, the path Q(x − 2j

′
, 2j) contains an

edge with label −2i, denoted by w
−2i−→ w′. Since xi′

alters after the change of xi in Q, we have Q(x −
2j
′
, w)i′ = 1 and Q(w′, 2j)i = 0. As a result, every

node of P (x−2i
′
, 2i) has a bit different from nodes of

Q(x− 2j
′
, w) ∪Q(w′, 2j).

Case 2: H1
j,n−k(x) = ∅ and (n − k)/2 + λ <

|H1
n−k(x)| 6 n− k. Let j′ = NEXTx(j). From the paths

constructed in Claim 1.2 (cf. Eqs. (11) and (12)), Q
starts with an edge labeled by +2j

′
or ∗, and ends

with an edge labeled by −2j . If j′ 6= ∗, then xj′ = 0.
It follows that Q must have passed through an edge
labeled by ∗. Since Q contains an edge with label −2i,

denoted by w
−2i−→ w′, an argument similar to Case 1

shows that Q(x+2j
′
, w)i′ = 1 and Q(w′, 2j)i = 0. Thus,

there is a different bit between nodes of P (x− 2i
′
, 2i)

and Q(x+ 2j
′
, w) ∪Q(w′, 2j). �

Claim 2.4. If i, j ∈ H0
n,n−k, then P ||Q.

Proof. Note that xi = xj = 0. From the paths con-
structed in Claim 1.2 (cf. Eq. (7)), we have NEXTx(i) =
i and NEXTx(j) = j. Thus, P (respectively, Q) has
the label +2i (respectively, +2j) in its first edge and
the label −2i (respectively, −2j) in its last edge. Since
xi (respectively, xj) has been changed to 1 when P
(respectively, Q) passes through the first edge, we
have P (x + 2i, 2i)i = Q(x + 2j , 2j)j = 1. Also, since
P (respectively, Q) does not contain an edge with
label +2j (respectively, +2i), we have P (x+ 2i, 2i)j =
Q(x+2j , 2j)i = 0. Thus, P (x+2i, 2i)∩Q(x+2j , 2j) = ∅.
�

Claim 2.5. If i ∈ H1
n−k and j ∈ H0

n−k, then P ||Q.

Proof. Note that xi = 1 and xj = 0. There are four
cases as follows.

Case 1: |H1
n−k(x)| < (n − k)/2. This implies

|H0
n−k(x)| > (n− k)/2. From the paths constructed in

Claim 1.1 (cf. Eqs. (4) and (5)), P starts with an edge
labeled by −2i

′
, where i′ = NEXTx(i), and ends with

an edge labeled by −2i. By contrast, from the paths
constructed in Claim 1.1 (cf. Eq. (3)), Q starts with an
edge labeled by +2j because NEXTx(j) = j, and ends
with an edge labeled by −2j . Since P (x−2i

′
, 2i) never

changes a bit from 0 to 1, we have P (x− 2i
′
, 2i)j = 0.
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On the other hand, since xj has been changed to 1
when Q passes through the first edge and then keeps
unchanged until Q passes through the last edge, we
have Q(x + 2j , 2j)j = 1. Thus, P (x − 2i

′
, 2i) ∩ Q(x +

2j , 2j) = ∅.
Case 2: (n− k)/2 6 |H1

n−k(x)| 6 (n− k)/2 + λ. This
implies (n− k)/2− λ 6 |H0

n−k(x)| 6 (n− k)/2. In this
case, P is the same as that described in Case 1. Let j′ =
NEXTx(j). From the paths constructed in Claim 1.1 (cf.
Eqs. (1) and (2)), Q starts with an edge labeled by +2j

′

or ∗, and ends with an edge labeled by −2j . If j′ 6=
∗, then xj′ = 0. It follows that Q must have passed
through an edge with label ∗, denoted by wQ

∗−→ w′Q.
Since P (x−2i

′
, 2i) never changes a bit from 0 to 1, we

have P (x−2i
′
, 2i)j = 0 and P (x−2i

′
, 2i)j′ = 0 for j′ 6=

∗. On the other hand, since xj′ has been changed to 1
when Q passes through the first edge, we have Q(x+
2j
′
, wQ)j′ = 1 and Q(w′Q, 2

j)j′ = 0. Moreover, since
Q(x+2j

′
, wQ) does not contain an edge with label +2j ,

we have Q(x+2j
′
, wQ)j = 0 and Q(w′Q, 2

j)j = 1. Thus,
there is a different bit between nodes of P (x− 2i

′
, 2i)

and Q(x+ 2j
′
, wQ) ∪Q(w′Q, 2

j).
Case 3: |H1

n−k(x)| > (n − k)/2 + λ (for n − k >
2). This implies |H0

n−k(x)| < (n − k)/2 − λ. Since
n − k > 2, we have |H1

n−k(x)| > 3 and there is a
position ` ∈ H1

n−k(x) \ {i} such that x` = 1. From
the paths constructed in Claim 1.1 (cf. Eq. (6)), we
have NEXTx(i) = i and P has the label −2i in its first
edge and last edge. In this case, Q is the same as that
described in Case 2. Note that both P and Q must
have passed through an edge with label ∗, denoted
by wP

∗−→ w′P and wQ
∗−→ w′Q respectively. Since

xi has been changed to 0 when P passes through
the first edge, we have P (x − 2i, wP )i = 0 and
P (w′P , 2

i)i = 1. Also, since P (x−2i, wP ) never changes
a bit from 1 to 0 after the change of xi, it follows that
P (x − 2i, wP )` = 1 and P (w′P , 2

i)` = 0. On the other
hand, since Q(x+ 2j

′
, wQ) never changes a bit from 1

to 0, we have Q(x+2j
′
, wQ)i = Q(x+2j

′
, wQ)` = 1 and

Q(w′Q, 2
j)i = Q(w′Q, 2

j)` = 0. Thus, there is a different
bit between nodes of P (x − 2i, wP ) ∪ P (w′P , 2

i) and
Q(x+ 2j

′
, wQ) ∪Q(w′Q, 2

j).
Case 4: |H1

2 (x)| = 2 (for n − k = 2). This case is
impossible because |H1

n−k(x)|=2 and j∈H0
n−k(x). �

Claim 2.6. If i ∈ H1
n−k and j ∈ H1

n,n−k, then P ||Q.

Proof. Note that xi = xj = 1. There are two cases as
follows.

Case 1: H1
j,n−k(x) 6= ∅ or |H1

n−k(x)| 6 (n− k)/2 +λ.
From the paths constructed in Claim 1.1 (cf. Eqs. (4)
and (5)), P starts with an edge labeled by −2i

′
, where

i′ = NEXTx(i), and ends with an edge labeled by −2i.
By contrast, from the paths constructed in Claim 1.2
(cf. Eqs. (8), (9) and (10)), Q starts with an edge labeled
by −2j

′
, where j′ = NEXTx(j), and ends with an edge

labeled by −2j . Note that it is possible i′ = j or j′ = i.

If j′ 6= i, then Q(x − 2j
′
, 2j) contains an edge with

label −2i, denoted by w
−2i−→ w′. Since xi′ alters after

the change of xi in Q, we have Q(x−2j
′
, w)i′ = 1 and

Q(w′, 2j)i = 0. On the other hand, since xi′ has been
changed to 0 when P passes through the first edge,
we have P (x − 2i

′
, 2i)i′ = 0. Also, since xi remains

unchanged until P passes through the last edge, we
have P (x−2i

′
, 2i)i = 1. This shows that every node of

P (x− 2i
′
, 2i) has a bit different from nodes of Q(x−

2j
′
, w) ∪Q(w′, 2j).
Case 2: H1

j,n−k(x) = ∅ and (n − k)/2 + λ <
|H1

n−k(x)| 6 n − k. Since |H1
n−k(x)| > (n − k)/2 + λ,

there is a position ` ∈ H1
n−k(x) \ {i} such that x` = 1.

Let j′ = NEXTx(j). From the paths constructed in
Claim 1.2 (cf. Eqs. (11) and (12)), Q starts with an
edge labeled by +2j

′
or ∗, and ends with an edge

labeled by −2j . If j′ 6= ∗, then j′ = maxH0
n−k(x) and

Q must have passed through an edge with label ∗,
denoted by wQ

∗−→ w′Q. For n − k > 2, from the
paths constructed in Claim 1.1 (cf. Eq. (6)), we have
NEXTx(i) = i and P has the label −2i in its first edge
and last edge. Note that P must have passed through
an edge with label ∗, denoted by wP

∗−→ w′P . Since xi
has been changed to 0 when P passes through the first
edge, we have P (x− 2i, wP )i = 0 and P (w′P , 2

i)i = 1.
Also, since P (x − 2i, wP ) never changes a bit from 1
to 0 except the first edge, we have P (x − 2i, wP )` =
1 and P (w′P , 2

i)` = 0. On the other hand, since
Q(x+2j

′
, wQ) never changes a bit from 1 to 0, we have

Q(x+2j
′
, wQ)i = Q(x+2j

′
, wQ)` = 1 and Q(w′Q, 2

j)i =
Q(w′Q, 2

j)` = 0. This shows that there is a different
bit between nodes of P (x − 2i, wP ) ∪ P (w′P , 2

i) and
Q(x+ 2j

′
, wQ) ∪Q(w′Q, 2

j).
For n − k = 2, from the paths constructed in

Claim 1.1 (cf. Eq. (6′)), P starts with an edge la-
beled by −2i

′
, where i′ = maxH1

2−i(x), and ends
with an edge labeled by −2i. Since xi′ has been
changed to 0 when P passes through the first edge,
we have P (x − 2i

′
, 2i)i′ = 0. Also, since xi remains

unchanged until P passes through the last edge, we
have P (x − 2i

′
, 2i)i = 1. On the other hand, since

Q(x + 2j
′
, wQ) never changes a bit from 1 to 0, we

have Q(x + 2j
′
, wQ)i = Q(x + 2j

′
, wQ)i′ = 1 and

Q(w′Q, 2
j)i = Q(w′Q, 2

j)i′ = 0. This shows that there
is a different bit between nodes of P (x − 2i

′
, 2i) and

Q(x+ 2j
′
, wQ) ∪Q(w′Q, 2

j). �

Claim 2.7. If i ∈ H1
n−k and j ∈ H0

n,n−k, then P ||Q.

Proof. Note that xi = 1 and xj = 0. Let w be the
node adjacent to x in P . From the paths constructed in
Claim 1.1 (cf. Eqs. (4), (5), (6) and (6′)), we know that P
ends with an edge labeled by −2i and never changes
a bit in H0

n,n−k(x) from 0 to 1. Since j ∈ H0
n,n−k,

we have P (w, 2i)j = 0. On the other hand, from
the paths constructed in Claim 1.2 (cf. Eq. (7)), we
have NEXTx(j) = j. Thus, Q has the label +2j in its
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first edge and the label −2j in its last edge. Since xj
has been changed to 1 when Q passes through the
first edge and then keeps unchanged until Q passes
through the last edge, we have Q(x + 2j , 2j)j = 1.
Thus P (w, 2i) ∩Q(x+ 2j , 2j) = ∅. �

Claim 2.8. If i ∈ H0
n−k and j ∈ H1

n,n−k, then P ||Q.

Proof. Note that xi = 0 and xj = 1. There are two
cases as follows.

Case 1: H1
j,n−k(x) 6= ∅ or |H1

n−k(x)| 6 (n− k)/2 +λ.
This implies |H0

n−k(x)| > (n − k)/2 − λ. In this case,
Q is the same as that in Case 1 of Claim 2.6. We first
consider (n − k)/2 > |H0

n−k(x)| > (n − k)/2 − λ. Let
i′ = NEXTx(i). From the paths constructed in Claim 1.1
(cf. Eqs. (1) and (2)), P starts with an edge labeled
by +2i

′
or ∗, and ends with an edge labeled by −2i.

If i′ 6= ∗, then xi′ = 0 and P must have passed
through an edge with label ∗, denoted by w

∗−→ w′.
Since xi′ has been changed to 1 when P passes
through the first edge, we have P (x + 2i

′
, w)i′ = 1

and P (w′, 2i)i′ = 0. Also, since xi remains unchanged
until P passes through the edge w

∗−→ w′, we have
P (x − 2i, w)i = 0 and P (w′, 2i)i = 1. On the other
hand, since Q never changes a bit from 0 to 1, we
have Q(x− 2j

′
, 2j)i = Q(x− 2j

′
, 2j)i′ = 0. Thus, every

node of P (x+2i, w)∪P (w′, 2i) has a bit different from
nodes of Q(x− 2j

′
, 2j).

Next, we consider |H0
n−k(x)| > (n− k)/2. From the

paths constructed in Claim 1.1 (cf. Eq. (3)), we have
NEXTx(i) = i. Thus, P has the label +2i in its first edge
and the label −2i in its last edge. Since xi has been
changed to 1 when P passes through the first edge
and then keeps unchanged until P passes through the
last edge, we have P (x + 2i, 2i)i = 1. On the other
hand, since Q never changes a bit from 0 to 1, we have
Q(x−2j

′
, 2j)i = 0. Thus P (x+2i, 2i)∩Q(x−2j

′
, 2j) = ∅.

Case 2: H1
j,n−k(x) = ∅ and (n − k)/2 + λ <

|H1
n−k(x)| 6 n − k. Since |H1

n−k(x)| > (n − k)/2 + λ,
it implies that |H0

n−k(x)| < (n − k)/2 − λ and there
is a position ` ∈ H1

n−k(x) such that x` = 1. Let
i′ = NEXTx(i). From the paths constructed in Claim 1.1
(cf. Eqs. (1) and (2)), P starts with an edge labeled
by +2i

′
or ∗, and ends with an edge labeled by −2i.

If i′ 6= ∗, then xi′ = 0 and P must have passed
through an edge with label ∗, denoted by wP

∗−→ w′P .
Since |H0

n−k(x)| 6 (n − k)/2, the path Q is the same
as that in Case 2 of Claim 2.6. Let j′ = NEXTx(j).
That is, Q starts with an edge labeled by +2j

′
or ∗,

and ends with an edge labeled by −2j . If j′ 6= ∗,
then j′ = maxH0

n−k(x) > i and Q must have passed
through an edge with label ∗, denoted by wQ

∗−→ w′Q.
Furthermore, if j′ > i, the path P (w′P , 2

i) contains

an edge with label −2j
′
, denoted by u

−2j
′

−→ u′, and
the path Q(x + 2j

′
, wQ) contains an edge with label

+2i, denoted by v
+2i−→ v′. It is clear that the bits in

positions i, j′ and ` for nodes in P are as follows:

P (x + 2i
′
, wP )i = P (x + 2i

′
, wP )j′ = P (u′, 2i)j′ =

P (w′P , u)` =P (u′, 2i)` = 0 and P (w′P , u)i =P (u′, 2i)i =
P (w′P , u)j′ = P (x + 2i

′
, wP )` = 1. On the other hand,

the bits in positions i, j′ and ` for nodes in Q are as
follows: Q(x + 2j

′
, v)i = Q(w′Q, 2

j)i = Q(w′Q, 2
j)j′ =

Q(w′Q, 2
j)` = 0 and Q(v′, wQ)i = Q(x + 2j

′
, v)j′ =

Q(v′, wQ)j′=Q(x+ 2j
′
, v)` =Q(v′, wQ)` =1. This show

that P (x+ 2i
′
, 2i) ∩Q(x+ 2j

′
, 2j) = ∅. �

Claim 2.9. If i ∈ H0
n−k and j ∈ H0

n,n−k, then P ||Q.

Proof. Note that xi = xj = 0. The proof is the same as
that in Claim 2.7, except for the path P constructed
in Claim 1.1 for Eqs. (1), (2) and (3). �

Claim 2.10. If i ∈ H1
n,n−k and j ∈ H0

n,n−k, then P ||Q.

Proof. Note that xi = 1 and xj = 0. Let w be the
node adjacent to x in P . From the paths constructed
in Claim 1.2 (cf. Eqs. from (8) to (12)), P ends with
an edge labeled by −2i and never changes a bit in
H0

n,n−k(x) from 0 to 1. Since j ∈ H0
n,n−k, we have

P (w, 2i)j = 0. In this case, Q is the same as that in
Claim 2.7. Thus, we can show P (w, 2i)∩Q(x+2j , 2j) =
∅ using a similar argument. �

Claim 2.11. If i ∈ H1
n−k and j = ∗, then P ||Q.

Proof. Note that xi = 1. There are four cases as
follows.

Case 1: |H1
n−k(x)| < (n − k)/2. This implies

|H0
n−k(x)| > (n − k)/2, and thus there is a position

` ∈ H0
n−k(x) such that x` = 0. From the paths

constructed in Claim 1.1 (cf. Eqs. (4) and (5)), P starts
with an edge labeled by −2i

′
, where i′ = NEXTx(i),

and ends with an edge labeled by −2i. Also, from the
paths constructed in Claim 1.3 (cf. Eqs. (13) and (16)),
Q has the label ∗ in its first edge and last edge. Since
P (x−2i

′
, 2i) never changes a bit from 0 to 1, we have

P (x−2i
′
, 2i)` = 0. On the other hand, since x` has been

changed to 1 when Q passes through the first edge
and then keeps unchanged until Q passes through the
last edge, we have Q(x ⊕ (2n−k − 1), 2n−k − 1)` = 1.
Thus, P (x− 2i, 2i) ∩Q(x⊕ (2n−k − 1), 2n−k − 1) = ∅.

Case 2: (n− k)/2 6 |H1
n−k(x)| 6 (n− k)/2 + λ. This

implies (n− k)/2− λ 6 |H0
n−k(x)| 6 (n− k)/2. In this

case, P is the same as that described in Case 1. Also,
from the paths constructed in Claim 1.3 (cf. Eqs. (14)
and (17)), Q starts with an edge labeled by +2j

′
, where

j′ = maxH0
n−k(x), and ends with an edge labeled by

∗. Since P (x− 2i
′
, 2i) never changes a bit from 0 to 1,

we have P (x− 2i
′
, 2i)j′ = 0. On the other hand, since

xj′ has been changed to 1 when Q passes through the
first edge and then keeps unchanged until Q passes
through the last edge, we have Q(x+2j

′
, 2n−k−1)j′ =

1. Thus, P (x− 2i, 2i) ∩Q(x+ 2j
′
, 2n−k − 1) = ∅.

Case 3: H1
n,n−k(x) = ∅ and |H1

n−k(x)| > (n−k)/2+λ.
This implies |H0

n−k(x)| < (n−k)/2−λ, and thus there
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is a position ` ∈ H1
n−k(x)\{i} such that x` = 1. Let j′ =

NEXTx(j). From the paths constructed in Claim 1.3 (cf.
Eqs. (17) and (18)), Q starts with an edge labeled by
+2j

′
or ∗, and ends with an edge labeled by ∗. For

n−k > 2, from the paths constructed in Claim 1.1 (cf.
Eq. (6)), we have NEXTx(i) = i and P has the label
−2i in its first edge and last edge. Note that P must
have passed through an edge with label ∗, denoted by
wP

∗−→ w′P . Since xi has been changed to 0 when P
passes through the first edge, we have P (x−2i, wP )i =
0 and P (w′P , 2

i)i = 1. Moreover, since P (x − 2i, wP )
never changes a bit from 1 to 0 after the change of xi, it
follows that P (x−2i, wP )` = 1 and P (w′P , 2

i)` = 0. On
the other hand, since Q(x+2j

′
, 2n−k−1) never changes

a bit from 1 to 0, we have Q(x + 2j
′
, 2n−k − 1)i =

Q(x + 2j
′
, 2n−k − 1)` = 1. Thus, there is a different

bit between nodes of P (x − 2i, wP ) ∪ P (w′P , 2
i) and

Q(x+ 2j
′
, 2n−k − 1).

For n − k = 2, from the paths constructed in
Claim 1.1 (cf. Eq. (6′)), we have i ∈ H1

2 . Thus, P starts
with an edge labeled by −2i

′
, where i′ = maxH1

2−i(x),
and ends with an edge labeled by −2i. Since xi′ has
been changed to 0 when P passes through the first
edge, we have P (x− 2i

′
, 2i)i′ = 0. On the other hand,

since Q(x + 2j
′
, 2n−k − 1) never changes a bit from

1 to 0, we have Q(x + 2j
′
, 2n−k − 1)i′ = 1. Thus,

P (x− 2i
′
, 2i) ∩Q(x+ 2j

′
, 2n−k − 1) = ∅.

Case 4: H1
n,n−k(x) 6= ∅ and |H1

n−k(x)| > (n−k)/2+λ.
This implies |H0

n−k(x)| < (n−k)/2−λ. In this case, P
is the same as that described in Case 3. From the paths
constructed in Claim 1.3 (cf. Eq. (15)), Q starts with
an edge labeled by −2j

′
, where j′ = maxH1

n(x), and
ends with an edge labeled by ∗. For n − k > 2, since
H1

n,n−k 6= ∅, we have j′ > i. By the same argument
as that in Case 3, we can show that P (x− 2i, wP )i =
P (w′P , 2

i)` = 0 and P (w′P , 2
i)i = P (x − 2i, wP )` = 1.

On the other hand, since Q(x − 2j
′
, 2n−k − 1) never

changes a bit from 1 to 0 in H1
n−k(x), we have Q(x−

2j
′
, 2n−k − 1)` = Q(x− 2j

′
, 2n−k − 1)i = 1. This shows

that every node of P (x− 2i, wP )∪P (w′P , 2
i) has a bit

different from nodes of Q(x− 2j
′
, 2n−k − 1).

For n − k = 2, by the same argument as that in
Case 3, we have P (x − 2i

′
, 2i)i′ = 0. Since H1

n,n−k 6=
∅, we have j′ > i′. On the other hand, since Q(x −
2j
′
, 2n−k−1) does not contain an edge with label −2i

′
,

we have Q(x−2j
′
, 2n−k−1)i′ = 1. Thus, P (x−2i

′
, 2i)∩

Q(x− 2j
′
, 2n−k − 1) = ∅. �

Claim 2.12. If i ∈ H0
n−k and j = ∗, then P ||Q.

Proof. Note that xi = 0. There are four cases as
follows.

Case 1: |H0
n−k(x)| > (n− k)/2. Since |H0

n−k(x)| > 2,
there is a position ` ∈ H0

n−k(x) \ {i} such that x` = 0.
In this case, NEXTx(i) = i. From the paths constructed
in Claim 1.1 (cf. Eq. (3)), P has the label +2i in its
first edge and the label −2i in its last edge. Also, from
the paths constructed in Claim 1.3 (cf. Eqs. (13) and

(16)), Q has the label ∗ in its first edge and last edge.
Since P (x + 2i, 2i) never changes a bit from 0 to 1
after the change of xi, we have P (x + 2i, 2i)` = 0.
On the other hand, since x` has been changed to 1
when Q passes through the first edge and then keeps
unchanged until Q passes through the last edge, we
have Q(x ⊕ (2n−k − 1), 2n−k − 1)` = 1. Thus, there
is a different bit between nodes of P (x + 2i, 2i) and
Q(x⊕ (2n−k − 1), 2n−k − 1).

Case 2: H1
n,n−k(x) 6= ∅ and (n − k)/2 − λ 6

|H0
n−k(x)| 6 (n − k)/2 or H1

n,n−k(x) = ∅ and 0 <
|H0

n−k(x)| 6 (n − k)/2. This implies that |H1
n−k(x)| >

(n−k)/2 > 1, and thus there is a position ` ∈ H1
n−k(x)

such that x` = 1. Let i′ = NEXTx(i). From the paths
constructed in Claim 1.1 (cf. Eqs. (1) and (2)), P starts
with an edge labeled by +2i

′
or ∗, and ends with

an edge labeled by −2i. If i′ 6= ∗, then P must
have passed through an edge with label ∗, denoted
by wP

∗−→ w′P . Also, from the paths constructed in
Claim 1.3 (cf. Eqs. (14) and (17)), Q starts with an edge
labeled by +2j

′
, where j′ = maxH0

n−k(x), and ends
with an edge labeled by ∗. Note that j′ > i. Since
P (x + 2i

′
, wP ) does not contain an edge with label

+2j
′
, we have P (x+2i

′
, wP )j′ = 0 and P (w′P , 2

i)j′ = 1.
Moreover, since P (x + 2i

′
, wP ) never changes a bit

from 1 to 0, we have P (x + 2i
′
, wP )` = 1 and

P (w′P , 2
i)` = 0. On the other hand, since xj′ has been

changed to 1 when Q passes through the first edge
and then keeps unchanged until Q passes through the
last edge, we have Q(x+2j

′
, 2n−k−1)j′ = 1. Moreover,

since Q(x+2j
′
, 2n−k−1) never changes a bit from 1 to

0, we have Q(x+2j
′
, 2n−k−1)` = 1. Thus, there is a dif-

ferent bit between nodes of P (x+ 2i
′
, wP )∪P (w′P , 2

i)
and Q(x+ 2j

′
, 2n−k − 1).

Case 3: H1
n,n−k(x) 6= ∅ and 0 < |H0

n−k(x)| < (n −
k)/2− λ. In this case, P is the same as that described
in Case 2. From the paths constructed in Claim 1.3
(cf. Eq. (15)), Q starts with an edge labeled by −2j

′
,

where j′ = maxH1
n(x), and ends with an edge labeled

by ∗. Since H1
n,n−k(x) 6= ∅, we have j′ ∈ H1

n,n−k(x).
Moreover, since |H1

n−k(x)| > (n − k)/2 + λ, there is a
position ` ∈ H1

n−k(x) such that x` = 1. Since P (x +

2i
′
, wP )` = 1, it implies P (w′P , 2

i)` = 0. Also, since
P (x + 2i

′
, wP ) never changes a bit from 1 to 0, we

have P (x + 2i
′
, wP )j′ = 1. On the other hand, since

xj′ has been changed to 0 when Q passes through the
first edge and then keeps unchanged until Q passes
through the last edge, we have Q(x−2j

′
, 2n−k−1)j′ =

0. Moreover, since Q(x−2j
′
, 2n−k−1) does not contain

an edge with label −2`, we have Q(x − 2j
′
, 2n−k −

1)` = 1. Thus, there is a different bit between nodes
of P (x+ 2i

′
, wP )∪P (w′P , 2

i) and Q(x− 2j
′
, 2n−k − 1).

Case 4: H0
n−k(x) = ∅. This case is impossible be-

cause i ∈ H0
n−k(x). �

Claim 2.13. If i ∈ H1
n,n−k and j = ∗, then P ||Q.
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Proof. Since i ∈ H1
n,n−k(x), it implies H1

n,n−k(x) 6= ∅.
There are six cases as follows.

Case 1: H1
i,n−k(x) 6= ∅ and |H1

n−k(x)| < (n − k)/2.
This implies |H0

n−k(x)| > (n− k)/2, and thus there is
a position ` ∈ H0

n−k(x) such that x` = 0. From the
paths constructed in Claim 1.2 (cf. Eq (9)), P starts
with an edge labeled by −2i

′
, where i′ = maxH1

i (x),
and ends with an edge labeled by −2i. Also, from
the paths constructed in Claim 1.3 (cf. Eq. (13)), Q
has the label ∗ in its first edge and last edge. Since
P (x−2i

′
, 2i) never changes a bit from 0 to 1, we have

P (x−2i
′
, 2i)` = 0. On the other hand, since x` has been

changed to 1 when Q passes through the first edge
and then keeps unchanged until Q passes through the
last edge, we have Q(x ⊕ (2n−k − 1), 2n−k − 1)` = 1.
Thus, P (x− 2i

′
, 2i) ∩Q(x⊕ (2n−k − 1), 2n−k − 1) = ∅.

Case 2: H1
i,n−k(x) = ∅ and |H1

n−k(x)| < (n − k)/2.
This implies |H0

n−k(x)| > (n− k)/2. In this case, P is
a path constructed in Claim 1.2(cf. Eqs. (8) and (10))
and Q is a path constructed in Claim 1.3 (cf. Eq. (13)).
The same argument as that in Case 1 shows that P ||Q.

Case 3: H1
i,n−k(x) 6= ∅ and (n− k)/2 6 |H1

n−k(x)| 6
(n− k)/2 + λ. It implies (n− k)/2− λ 6 |H0

n−k(x)| 6
(n−k)/2. In this case, P is the same as that described
in Case 1. From the paths constructed in Claim 1.3 (cf.
Eq. (14)), Q starts with an edge labeled by +2j

′
, where

j′ = maxH0
n−k(x), and ends with an edge labeled by

∗. Since P (x− 2i
′
, 2i) never changes a bit from 0 to 1,

we have P (x− 2i
′
, 2i)j′ = 0. On the other hand, since

xj′ has been changed to 1 when Q passes through the
first edge and then keeps unchanged until Q passes
through the last edge, we have Q(x+2j

′
, 2n−k−1)j′ =

1. Thus, P (x− 2i
′
, 2i) ∩Q(x+ 2j

′
, 2n−k − 1) = ∅.

Case 4: H1
i,n−k(x) = ∅ and (n− k)/2 6 |H1

n−k(x)| 6
(n−k)/2+λ. This implies (n−k)/2−λ 6 |H0

n−k(x)| 6
(n − k)/2. In this case, P is a path constructed in
Claim 1.2 (cf. Eq. (10)) and Q is a path constructed
in Claim 1.3 (cf. Eq. (14)). The same argument as that
in Case 3 shows that P ||Q.

Case 5: H1
i,n−k(x) 6= ∅ and |H1

n−k(x)| > (n−k)/2+λ.
This implies |H0

n−k(x)| < (n − k)/2 − λ. From the
paths constructed in Claim 1.2 (cf. Eq (9)), P starts
with an edge labeled by −2i

′
, where i′ = maxH1

i (x),
and ends with an edge labeled by −2i. Since xi′

has been changed to 0 when P passes through the
first edge, we have P (x − 2i

′
, 2i)i′ = 0. Also, since

xi remains unchanged until P passes through the
last edge, we have P (x − 2i

′
, 2i)i = 1. On the other

hand, from the paths constructed in Claim 1.3 (cf.
Eq. (15)), Q starts with an edge labeled by −2j

′
, where

j′ = max1
n(x), and ends with an edge labeled by ∗.

Note that it is possible j′ = i. If j′ 6= i, it is clear
that Q(x − 2j

′
, 2n−k − 1) contains an edge with label

−2i, denoted by w
−2i−→ w′. Since xi′ alters after the

change of xi in Q, we have Q(x − 2j
′
, w)i′ = 1 and

Q(w′, 2n−k − 1)i = 0. This shows that every node
of P (x − 2i

′
, 2i) has a bit different from nodes of

Q(x− 2j
′
, w) ∪Q(w′, 2n−k − 1).

Case 6: H1
i,n−k(x) = ∅ and |H1

n−k(x)| > (n− k)/2 +
λ. This implies |H0

n−k(x)| < (n − k)/2 − λ. Since
|H1

n−k(x)| > 1, there is a position ` ∈ H1
n−k(x) such

that x` = 1. In this case, Q is the same as that
described in Case 5. Since xj′ has been changed to
0 when Q passes through the first edge and then
keeps unchanged until Q passes through the last
edge, we have Q(x − 2j

′
, 2n−k − 1)j′ = 0. Also, since

Q(x − 2j
′
, 2n−k − 1) never changes x` to 0, we have

Q(x − 2j
′
, 2n−k − 1)` = 1. Let i′ = NEXTx(i). From

the paths constructed in Claim 1.2 (cf. Eqs. (11) and
(12)), P starts with an edge labeled by +2i

′
or ∗, and

ends with an edge labeled by −2i. If i′ 6= ∗, then
i′ = maxH0

n−k(x) and P must have passed through
an edge with label ∗, denoted by w

∗−→ w′. Since
P (x+ 2i

′
, w) never changes a bit from 1 to 0, we have

P (x+2i
′
, w)` = 1 and P (w′, 2i) contains an edge with

label −2j
′
. This further implies that P (x+2i

′
, w)j′ = 1

and P (w′, 2i)` = 0. This shows that every node of
P (x+ 2i

′
, w)∪P (w′, 2i) has a bit different from nodes

of Q(x− 2j
′
, 2n−k − 1). �

Claim 2.14. If i ∈ H0
n,n−k and j = ∗, then P ||Q.

Proof. Note that xi = 0. From the paths constructed
in Claim 1.2 (cf. Eq. (7)), we have NEXTx(i) = i.
Thus, P has the label +2i in its first edge and the
label −2i in its last edge. Since xi has been changed
to 1 when P passes through the first edge and then
keeps unchanged until P passes through the last edge,
we have P (x + 2i, 2i)i = 1. On the other hand, let
w be the node adjacent to x in Q. From the paths
constructed in Claim 1.3 (cf. Eqs. from (13) to (18)), Q
never changes a bit in H0

n,n−k(x) from 0 to 1. Since
i ∈ H0

n,n−k(x), we have Q(w, 2n−k − 1)i = 0. Thus,
P (x+ 2i, 2i) ∩Q(w, 2n−k − 1) = ∅. �


