▶ Problem DM-1.11-16 Prove by induction that

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{n+1}$$

is a closed form for the Fibonacci sequence.

Proof. Let $n_0 = 0$ and

$$\mathcal{T} = \{ n \in \mathbb{N} : F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \}.$$

(Base step) Identify n = 0, 1 as the base cases. Evaluate F_0 and F_1 directly:

$$F_{0} = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right) - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right) = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} - \frac{1-\sqrt{5}}{2} \right) = 1$$

$$F_{1} = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{2} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{2} = \frac{1}{\sqrt{5}} \left(\frac{6+2\sqrt{5}}{4} - \frac{6-2\sqrt{5}}{4} \right) = 1$$

$$1 \in \mathcal{T}$$

So, $0, 1 \in \mathcal{T}$.

(Inductive step) Now, let $n \ge 2$ and assume for k = 0, 1, ..., n - 1 that $k \in \mathcal{T}$. Prove that $n \in \mathcal{T}$ by showing that F_n has the desired closed form. Note that $1 + \frac{2}{1+\sqrt{5}} = \frac{1+\sqrt{5}}{2}$ and $1 + \frac{2}{1-\sqrt{5}} = \frac{1-\sqrt{5}}{2}$. Then

$$F_{n} = F_{n-1} + F_{n-2}$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n} - \left(\frac{1-\sqrt{5}}{2} \right)^{n} \right] + \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n-1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n-1} \right] \right]$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n} + \left(\frac{1+\sqrt{5}}{2} \right)^{n-1} \right] - \frac{1}{\sqrt{5}} \left[\left(\frac{1-\sqrt{5}}{2} \right)^{n} + \left(\frac{1-\sqrt{5}}{2} \right)^{n-1} \right] \right]$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n} \left(1 + \frac{2}{1+\sqrt{5}} \right) - \left(\frac{1-\sqrt{5}}{2} \right)^{n} \left(1 + \frac{2}{1-\sqrt{5}} \right) \right]$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right]$$

Therefore, $n \in \mathcal{T}$.

By the Strong form of Mathematical Induction, $\mathcal{T} = \mathbb{N}$. That is,

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right]$$

is a closed form for the terms of the recursively defined sequence.