
I Problem DM-1.11-16 Prove by induction that
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is a closed form for the Fibonacci sequence.

Proof. Let n0 = 0 and
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(Base step) Identify n = 0, 1 as the base cases. Evaluate F0 and F1 directly:
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So, 0, 1 ∈ T .

(Inductive step) Now, let n ≥ 2 and assume for k = 0, 1, . . . , n− 1 that k ∈ T . Prove

that n ∈ T by showing that Fn has the desired closed form. Note that 1 + 2
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Therefore, n ∈ T .

By the Strong form of Mathematical Induction, T = N. That is,
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is a closed form for the terms of the recursively defined sequence. �
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