- Problem DM-1.11-16 Prove by induction that

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}
$$

is a closed form for the Fibonacci sequence.
Proof. Let $n_{0}=0$ and

$$
\mathcal{T}=\left\{n \in \mathbb{N}: F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right\}
$$

(Base step) Identify $n=0,1$ as the base cases. Evaluate F_{0} and F_{1} directly:

$$
\begin{aligned}
& F_{0}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}\right)=1 \\
& F_{1}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{2}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{2}=\frac{1}{\sqrt{5}}\left(\frac{6+2 \sqrt{5}}{4}-\frac{6-2 \sqrt{5}}{4}\right)=1
\end{aligned}
$$

So, $0,1 \in \mathcal{T}$.
(Inductive step) Now, let $n \geq 2$ and assume for $k=0,1, \ldots, n-1$ that $k \in \mathcal{T}$. Prove that $n \in \mathcal{T}$ by showing that F_{n} has the desired closed form. Note that $1+\frac{2}{1+\sqrt{5}}=\frac{1+\sqrt{5}}{2}$ and $1+\frac{2}{1-\sqrt{5}}=\frac{1-\sqrt{5}}{2}$. Then

$$
\begin{aligned}
F_{n} & =F_{n-1}+F_{n-2} \\
& =\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]+\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n-1}\right] \\
& =\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}\right]-\frac{1}{\sqrt{5}}\left[\left(\frac{1-\sqrt{5}}{2}\right)^{n}+\left(\frac{1-\sqrt{5}}{2}\right)^{n-1}\right] \\
& =\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}\left(1+\frac{2}{1+\sqrt{5}}\right)-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\left(1+\frac{2}{1-\sqrt{5}}\right)\right] \\
& =\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right]
\end{aligned}
$$

Therefore, $n \in \mathcal{T}$.
By the Strong form of Mathematical Induction, $\mathcal{T}=\mathbb{N}$. That is,

$$
F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right]
$$

is a closed form for the terms of the recursively defined sequence.

