- Problem DM-1.4-24 Recall that in the definition of a boolean algebra, we did not require that \top, \perp, and each $\neg x$ be specified; we merely said they must exist. So, it is natural to ask whether there might be several elements that could equally well be chosen as \top or \perp or, for some element x of the boolean algebra, several different possible choices for $\neg x$. Show that in a complemented lattice:
(a) There is only one possible choice of elements \top and \perp satisfying the definition of a complemented lattice.
(b) For each element x of a complemented, distributive lattice, there is only one possible choice for $\neg x$ that satisfies the definition of $\neg x$.

Proof. (a) Consider a complemented lattice X together with the operations \wedge and \vee. From the definition, we have $x \wedge \top=x$ for every $x \in X$. Suppose that there exist two possible choices for T, say T_{1} and T_{2}. We now evaluate $T_{1} \wedge T_{2}$ in two different ways: (i) Since T_{2} is maximum element, $T_{1} \wedge T_{2}=T_{1}$, and (ii) By the commutative law for meet and since T_{1} is maximum element, $T_{1} \wedge T_{2}=T_{2} \wedge T_{1}=T_{2}$. Thus, if $T_{1} \neq T_{2}$, then it leads to a contradiction. Therefore, the maximum element \top in X is unique.

The fact that the minimum element \perp in X is unique can be proved by a similar way.
(b) Suppose that X together with \wedge and \vee form a boolean algebra (i.e., a complemented, distributive lattice) and $x \in X$. To show that $\neg x$ is unique in X, we suppose to the contrary that there exist two choices, say $\neg x_{1}$ and $\neg x_{2}$, for $\neg x$. We now evaluate $\neg x_{1} \wedge x \vee \neg x_{2}$ in two different ways:

$$
\begin{aligned}
\neg x_{1} \wedge x \vee \neg x_{2} & =\left(\neg x_{1} \wedge x\right) \vee \neg x_{2} \\
& =\perp \vee \neg x_{2} \\
& =\neg x_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\neg x_{1} \wedge x \vee \neg x_{2} & =\left(\neg x_{1} \wedge x\right) \vee \neg x_{2} \\
& =\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x \vee \neg x_{2}\right) \quad \text { // Distributive Law for Join } \\
& =\left(\neg x_{1} \vee \neg x_{2}\right) \wedge \top \\
& =\neg x_{1} \vee \neg x_{2}
\end{aligned}
$$

This shows that $\neg x_{2}=\neg x_{1} \vee \neg x_{2}$. On the other hand, if we evaluate $\neg x_{2} \wedge x \vee \neg x_{1}$ in two different ways similarly, we can obtain $\neg x_{1}=\neg x_{2} \vee \neg x_{1}$. Therefore, the element $\neg x_{1}=\neg x_{2} \vee \neg x_{1}=\neg x_{1} \vee \neg x_{2}=\neg x_{2}$ is unique.

