▶ Problem DM-1.4-24 Recall that in the definition of a boolean algebra, we did not require that \neg , \bot , and each $\neg x$ be specified; we merely said they must exist. So, it is natural to ask whether there might be several elements that could equally well be chosen as \top or \bot or, for some element x of the boolean algebra, several different possible choices for $\neg x$. Show that in a complemented lattice:

- (a) There is only one possible choice of elements \top and \perp satisfying the definition of a complemented lattice.
- (b) For each element x of a complemented, distributive lattice, there is only one possible choice for $\neg x$ that satisfies the definition of $\neg x$.

Proof. (a) Consider a complemented lattice X together with the operations \land and \lor . From the definition, we have $x \land \top = x$ for every $x \in X$. Suppose that there exist two possible choices for \top , say \top_1 and \top_2 . We now evaluate $\top_1 \land \top_2$ in two different ways: (i) Since \top_2 is maximum element, $\top_1 \land \top_2 = \top_1$, and (ii) By the commutative law for meet and since \top_1 is maximum element, $\top_1 \land \top_2 = \top_2 \land \top_1 = \top_2$. Thus, if $\top_1 \neq \top_2$, then it leads to a contradiction. Therefore, the maximum element \top in X is unique.

The fact that the minimum element \perp in X is unique can be proved by a similar way.

(b) Suppose that X together with \wedge and \vee form a boolean algebra (i.e., a complemented, distributive lattice) and $x \in X$. To show that $\neg x$ is unique in X, we suppose to the contrary that there exist two choices, say $\neg x_1$ and $\neg x_2$, for $\neg x$. We now evaluate $\neg x_1 \wedge x \vee \neg x_2$ in two different ways:

$$\neg x_1 \land x \lor \neg x_2 = (\neg x_1 \land x) \lor \neg x_2$$
$$= \bot \lor \neg x_2$$
$$= \neg x_2$$

and

$$\neg x_1 \wedge x \vee \neg x_2 = (\neg x_1 \wedge x) \vee \neg x_2$$

$$= (\neg x_1 \vee \neg x_2) \wedge (x \vee \neg x_2) // \text{ Distributive Law for Join}$$

$$= (\neg x_1 \vee \neg x_2) \wedge \top$$

$$= \neg x_1 \vee \neg x_2$$

This shows that $\neg x_2 = \neg x_1 \lor \neg x_2$. On the other hand, if we evaluate $\neg x_2 \land x \lor \neg x_1$ in two different ways similarly, we can obtain $\neg x_1 = \neg x_2 \lor \neg x_1$. Therefore, the element $\neg x_1 = \neg x_2 \lor \neg x_1 = \neg x_1 \lor \neg x_2 = \neg x_2$ is unique.