- Problem DM-1.6-20 Find the number of integers between 1 and 1000, including 1 and 1000 , that are not divisible by any of $4,6,7$, or 10 .

Solution. Let $U=\{n \in \mathbb{N}: 1 \leq n \leq 1000\}$ and $D_{i}=\{n \in \mathbb{N}: 1 \leq n \leq 1000$ and n is divisible by $i\}$. According to the problem, we need to compute $\left|\overline{D_{4} \cup D_{6} \cup D_{7} \cup D_{10}}\right|$. By the Principle of Inclusion-Exclusion, we have

$$
\begin{aligned}
\left|D_{4} \cup D_{6} \cup D_{7} \cup D_{10}\right|= & \left|D_{4}\right|+\left|D_{6}\right|+\left|D_{7}\right|+\left|D_{10}\right|-\left|D_{4} \cap D_{6}\right|-\left|D_{4} \cap D_{7}\right|- \\
& \left|D_{4} \cap D_{10}\right|-\left|D_{6} \cap D_{7}\right|-\left|D_{6} \cap D_{10}\right|-\left|D_{7} \cap D_{10}\right|+ \\
& \left|D_{4} \cap D_{6} \cap D_{7}\right|+\left|D_{4} \cap D_{6} \cap D_{10}\right|+\left|D_{4} \cap D_{7} \cap D_{10}\right|+ \\
& \left|D_{6} \cap D_{7} \cap D_{10}\right|-\left|D_{4} \cap D_{6} \cap D_{7} \cap D_{10}\right|
\end{aligned}
$$

and $\left|\overline{D_{4} \cup D_{6} \cup D_{7} \cup D_{10}}\right|=|U|-\left|D_{4} \cup D_{6} \cup D_{7} \cup D_{10}\right|$.
Obviously, $|U|=1000,\left|D_{4}\right|=250,\left|D_{6}\right|=166,\left|D_{7}\right|=142$, and $\left|D_{10}\right|=100$. Also, for any two integers a and b, an integer n is divisible by both a and b if and only if n is divisible by $\operatorname{LCM}(a, b)$, the least common multiple of a and b. So $D_{4} \cap D_{6}=D_{12}$ and $\left|D_{12}\right|=83$. Similarly,

$$
\begin{aligned}
& \left|D_{4} \cap D_{7}\right|=\left|D_{28}\right|=35 \\
& \left|D_{4} \cap D_{10}\right|=\left|D_{20}\right|=50 \\
& \left|D_{6} \cap D_{7}\right|=\left|D_{42}\right|=23 \\
& \left|D_{6} \cap D_{10}\right|=\left|D_{30}\right|=33 \\
& \left|D_{7} \cap D_{10}\right|=\left|D_{70}\right|=14 \\
& \left|D_{4} \cap D_{6} \cap D_{7}\right|=\left|D_{84}\right|=11 \\
& \left|D_{4} \cap D_{6} \cap D_{10}\right|=\left|D_{60}\right|=16 \\
& \left|D_{4} \cap D_{7} \cap D_{10}\right|=\left|D_{140}\right|=7 \\
& \left|D_{6} \cap D_{7} \cap D_{10}\right|=\left|D_{210}\right|=4
\end{aligned}
$$

and

$$
\left|D_{4} \cap D_{6} \cap D_{7} \cap D_{10}\right|=\left|D_{420}\right|=2
$$

Now, by the Principle of Inclusion-Exclusion,

$$
\begin{aligned}
& \left|\overline{D_{4} \cup D_{6} \cup D_{7} \cup D_{10}}\right| \\
& \quad=1000-(250+166+142+100-83-35-50-23-33-14+11+16+7+4-2) \\
& =544
\end{aligned}
$$

