▶ Problem DM-1.9-22 Show that any integer consisting of 3^n identical digits is divisible by 3^n . Verify this for 222; 777; 222, 222, 222; and 555, 555, 555. Prove the general statement for all $n \in \mathbb{N}$ by induction.

Verification: For integers *a* and *b*, we say *a* is a divisor of *b*, denoted as a|b, if there is a nutural number *k* such that $b = a \cdot k$. For n = 1, it is easy to check that $222/3^1 = 74$ and $777/3^1 = 259$. Thus, we have $3^1|222$ and $3^1|777$. For n = 2, since $222, 222, 222/3^2 =$ 24, 691, 358 and $555, 555, 555/3^2 = 61, 728, 395$, we have $3^2|222, 222, 222, and 3^2|555, 555, 555$.

We now show that $3^n | \underbrace{xx \cdots x}_{\text{the length is } 3^n}$ for any digit $x \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ by induc-

tion.

Proof. Let $n_0 = 0$ and

 $\mathcal{T} = \{n \in \mathbb{N} : 3^n | X \text{ where } X = xx \cdots x \text{ is an integer consisting of } 3^n \text{ identical digits} \}.$

(Base step) For n = 0, it is obvious that $3^0 = 1$ is a divisor of any integer $X \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Thus, $0 \in \mathcal{T}$.

(Inductive step) Let $n \ge 0$. Show that if $n \in \mathcal{T}$, then $n + 1 \in \mathcal{T}$. Since $n \in \mathcal{T}$, it is assumed that $3^n | X$ where $X = xx \cdots x$ is an integer consisting of 3^n identical digits x. We will prove that $3^{n+1} | Y$ where $Y = xx \cdots x$ is an integer consisting of 3^{n+1} identical digits x.

Let $x \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ be any digit, and let X and Y be two integers consisting of 3^n and 3^{n+1} identical digits x, respectively. Then

$$Y = X \cdot \left[(10^{3^n})^2 + (10^{3^n})^1 + (10^{3^n})^0 \right]$$
(1)

For instance, if n = 0 and X = 2, then $Y = 2 \cdot (10^2 + 10^1 + 10^0) = 222$. Also, if n = 1 and X = 222, then $Y = 222 \cdot (10^6 + 10^3 + 10^0) = 222, 222, 222$.

By induction hypothesis, we have $3^n | X$. Also, it is clear that $3|(10^{3^n})^2 + (10^{3^n})^1 + (10^{3^n})^0$. Therefore, by (1) we conclude that $3^{n+1} | Y$.