- Problem DM-1.9-24(a)-(b) Prove the following results for the Fibonacci numbers:
(a) $F_{3 n}$ and $F_{3 n+1}$ are odd, and $F_{3 n+2}$ is even for $n \geq 0$.
(b) $F_{0}+F_{2}+\cdots+F_{2 n}=F_{2 n+1}$ for $n \geq 0$.

Proof. (a) Let $n_{0}=0$ and $\mathcal{T}=\left\{n \in \mathbb{N}: F_{3 n}\right.$ and $F_{3 n+1}$ are odd and $F_{3 n+2}$ is even $\}$. We will prove by induction that $\mathcal{T}=\mathbb{N}$.
(Base step) By the definition of Fibonacci numbers, $F_{0}=F_{1}=1$ is odd and $F_{2}=$ $F_{0}+F_{1}=2$ is even. So, $0 \in \mathcal{T}$.
(Inductive step) Let $n \geq 0$. Show that if $n \in \mathcal{T}$, then $n+1 \in \mathcal{T}$. Since $n \in \mathcal{T}$, it is assumed that $F_{3 n}$ and $F_{3 n+1}$ are odd, and $F_{3 n+2}$ is even. We must prove that $F_{3(n+1)}$ and $F_{3(n+1)+1}$ are odd, and $F_{3(n+1)+2}$ is even. We are now easy to verify as follows:

$$
\begin{aligned}
& F_{3(n+1)}=F_{3 n+3}=F_{3 n+1}+F_{3 n+2} \text { is odd }(\text { since odd }+ \text { even }=\text { odd }) \\
& F_{3(n+1)+1}=F_{3 n+4}=F_{3 n+2}+F_{3 n+3} \text { is odd }(\text { since even }+ \text { odd }=\text { odd })
\end{aligned}
$$

and

$$
F_{3(n+1)+2}=F_{3 n+5}=F_{3 n+3}+F_{3 n+4} \text { is even }(\text { since odd }+ \text { odd }=\text { even })
$$

Therefore, $n+1 \in \mathcal{T}$.
By the Principle of Mathematical Induction, $\mathcal{T}=\mathbb{N}$.
(b) Let $n_{0}=0$ and $\mathcal{T}=\left\{n \in \mathbb{N}: F_{0}+F_{2}+\cdots+F_{2 n}=F_{2 n+1}\right\}$. We will prove by induction that $\mathcal{T}=\mathbb{N}$.
(Base step) For $n=0$, the left-hand side is $F_{0}=1$ and the right-hand side is $F_{2 \cdot 0+1}=$ $F_{1}=1$. So, the two sides are equal, and $0 \in \mathcal{T}$.
(Inductive step) Let $n \geq 0$. Show that if $n \in \mathcal{T}$, then $n+1 \in \mathcal{T}$. Since $n \in \mathcal{T}$, it is assumed that $F_{0}+F_{2}+\cdots+F_{2 n}=F_{2 n+1}$. We must prove that $F_{0}+F_{2}+\cdots+F_{2 n}+F_{2(n+1)}=$ $F_{2(n+1)+1}$. The required computation is

$$
\begin{aligned}
& F_{0}+F_{2}+\cdots+F_{2 n}+F_{2(n+1)} \\
= & \left(F_{0}+F_{2}+\cdots+F_{2 n}\right)+F_{2 n+2} \\
= & F_{2 n+1}+F_{2 n+2} \\
= & F_{2 n+3} \\
= & F_{2(n+1)+1}
\end{aligned}
$$

Therefore, $n+1 \in \mathcal{T}$.
By the Principle of Mathematical Induction, $\mathcal{T}=\mathbb{N}$.

