- Problem DM-1.9-24(c)-(d) Prove the following results for the Fibonacci numbers:.
(c) $F_{0}+F_{3}+\cdots+F_{3 n}=F_{3 n+2} / 2$ for $n \geq 0$.
(d) $F_{n+1}^{2}=F_{n} \cdot F_{n+2}-(-1)^{n}$ for $n \geq 0$.

Proof. (c) Let $n_{0}=0$ and $\mathcal{T}=\left\{n \in \mathbb{N}: F_{0}+F_{3}+\cdots+F_{3 n}=\frac{1}{2} F_{3 n+2}\right\}$. We will prove by induction that $\mathcal{T}=\mathbb{N}$.
(Base step) For $n=0$, the left-hand side is $F_{0}=1$ and the right-hand side is $\frac{1}{2} F_{3 \cdot 0+2}=$ $\frac{1}{2} F_{2}=2 / 2=1$. So, the two sides are equal, and $0 \in \mathcal{T}$.
(Inductive step) Let $n \geq 0$. Show that if $n \in \mathcal{T}$, then $n+1 \in \mathcal{T}$. Since $n \in \mathcal{T}$, it is assumed that $F_{0}+F_{3}+\cdots+F_{3 n}=\frac{1}{2} F_{3 n+2}$. We must prove that $F_{0}+F_{3}+\cdots+F_{3 n}+$ $F_{3(n+1)}=\frac{1}{2} F_{3(n+1)+2}$. The required computation is

$$
\begin{aligned}
& F_{0}+F_{3}+\cdots+F_{3 n}+F_{3(n+1)} \\
= & \left(F_{0}+F_{3}+\cdots+F_{3 n}\right)+F_{3 n+3} \\
= & \frac{1}{2} F_{3 n+2}+F_{3 n+3} \\
= & \frac{1}{2}\left(F_{3 n+2}+2 F_{3 n+3}\right) \\
= & \frac{1}{2}\left(\left(F_{3 n+2}+F_{3 n+3}\right)+F_{3 n+3}\right) \\
= & \frac{1}{2}\left(F_{3 n+4}+F_{3 n+3}\right) \\
= & \frac{1}{2} F_{3 n+5} \\
= & \frac{1}{2} F_{3(n+1)+2}
\end{aligned}
$$

Therefore, $n+1 \in \mathcal{T}$.
By the Principle of Mathematical Induction, $\mathcal{T}=\mathbb{N}$.
(d) Let $n_{0}=0$ and $\mathcal{T}=\left\{n \in \mathbb{N}: F_{n+1}^{2}=F_{n} \cdot F_{n+2}-(-1)^{n}\right\}$. We will prove by induction that $\mathcal{T}=\mathbb{N}$.
(Base step) For $n=0$, the left-hand side is $F_{1}^{2}=1$ and the right-hand side is $F_{0} \cdot F_{2}$ -$(-1)^{0}=1 \cdot 2-1=1$. So, the two sides are equal, and $0 \in \mathcal{T}$.
(Inductive step) Let $n \geq 0$. Show that if $n \in \mathcal{T}$, then $n+1 \in \mathcal{T}$. Since $n \in \mathcal{T}$, it is assumed that

$$
F_{n+1}^{2}=F_{n} \cdot F_{n+2}-(-1)^{n} .
$$

We must prove that

$$
F_{(n+1)+1}^{2}=F_{n+1} \cdot F_{(n+1)+2}-(-1)^{(n+1)}
$$

The required computation is

$$
\begin{aligned}
& F_{(n+1)+1}^{2} \\
= & F_{n+2}^{2} \\
= & F_{n+2} \cdot\left(F_{n}+F_{n+1}\right) \\
= & F_{n} \cdot F_{n+2}+F_{n+1} \cdot F_{n+2} \\
= & \left(F_{n} \cdot F_{n+2}-(-1)^{n}\right)+\left(F_{n+1} \cdot F_{n+2}+(-1)^{n}\right) \\
= & F_{n+1}^{2}+\left(F_{n+1} \cdot F_{n+2}+(-1)^{n}\right) \\
= & F_{n+1} \cdot\left(F_{n+1}+F_{n+2}\right)-(-1)^{(n+1)} \\
= & F_{n+1} \cdot F_{n+3}-(-1)^{(n+1)} \\
= & F_{n+1} \cdot F_{(n+1)+2}-(-1)^{(n+1)}
\end{aligned}
$$

Therefore, $n+1 \in \mathcal{T}$.
By the Principle of Mathematical Induction, $\mathcal{T}=\mathbb{N}$.

