- Problem DM-3.3-10

(a) Prove for any set X that $I d_{X}=I d_{X}^{-1}$.
(b) Find two binary relations R and S on \mathbb{N} where $R \neq I d_{\mathbb{N}}$ and $S \neq I d_{\mathbb{N}}$ such that $R=R^{-1}$ and $S=S^{-1}$.
(c) Suppose that R is a binary relation on a set X and, for every binary relation S on $X, R \circ S=S$. Prove that $R=I d_{X}$.

Proof. (a) By definition,

$$
\begin{aligned}
I d_{X} & =\{(x, y): x, y \in X \text { and } x=y\} \\
& =\{(x, x): x \in X\}
\end{aligned}
$$

Since $R^{-1}=\{(x, y):(y, x) \in R\}$ for any binary relation R, we have

$$
\begin{aligned}
I d_{X}^{-1} & =\left\{(x, y):(y, x) \in I d_{X}\right\} \\
& =\{(x, y): y, x \in X \text { and } y=x\} \\
& =\{(x, x): x \in X\} \\
& =I d_{X}
\end{aligned}
$$

(b) Let $R=\{(x, x): x \in \mathbb{N}$ is an odd integer $\}$ and $S=\{(y, y): y \in \mathbb{N}$ is an even integer $\}$. Then, it is clear that $R=R^{-1} \neq \emptyset$ and $S=S^{-1} \neq \emptyset$. Since $I d_{\mathbb{N}}=R \cup S$, we have $R \neq I d_{\mathbb{N}}$ and $S \neq I d_{\mathbb{N}}$.
(c) Consider R to be a binary relation on a set X. To show that $R \circ S=S$ implies $R=I d_{X}$ for any relation S on X. We will prove that if $R \neq I d_{X}$ then there exists a relation S on X such that $R \circ S \neq S$. Since $R \neq I d_{X}$, there exist $x, y \in X$ with $x \neq y$ such that $(x, y) \in R$. We now let $S=I d_{X}$. Clearly, $(x, y) \notin S$ and $(x, x) \in S$. By the definition of composition $R \circ S$ and the the facts $(x, x) \in S$ and $(x, y) \in R$, we have $(x, y) \in R \circ S$. Therefore, $R \circ S \neq S$.

