- Problem DM-3.3-12 Show that composition of relation is an associative operation. That is, show that if R, S, and T are binary relation on a set X, then

$$
R \circ(S \circ T)=(R \circ S) \circ T
$$

Proof. Let $(x, w) \in X^{2}$. We will show that $(x, w) \in R \circ(S \circ T)$ if and only if $(x, w) \in$ $(R \circ S) \circ T$. The proof is as follows:

$$
(x, w) \in(R \circ S) \circ T
$$

\Leftrightarrow there exists an element $y \in X$ such that $(x, y) \in T$ and $(y, w) \in R \circ S$
\Leftrightarrow there exist elements $y, z \in X$ such that $(x, y) \in T,(y, z) \in S$, and $(z, w) \in R$
\Leftrightarrow there exists an element $z \in X$ such that $(x, z) \in S \circ T$ and $(z, w) \in R$
$\Leftrightarrow \quad(x, z) \in R \circ(S \circ T)$

