- Problem DM-3.3-14 Let $X=\{0,1\}$. Let $B=\mathcal{P}(X \times X)$ be the set of all binary relations on X.
(a) List all the element of B.
(b) Since elements of B are themselves relations, it makes sence to ask whether two of those relations are inverses of each other. Let

$$
\text { IsInverse } O f=\left\{(R, S): R \in B \text { and } S \in B \text { and } R=S^{-1}\right\}
$$

List all elements of IsInverseOf.
(c) Since IsInverse Of is a binary relation, it has an inverse. What is IsInverse $O f^{-1}$?
(d) What is IsInverseOf \circ IsInverseOf?

Solution. (c) It is easy to see from (b) that IsInverseOf ${ }^{-1}=$ IsInverseOf.
(d)

$$
\begin{aligned}
& \text { IsInverseOf ○ IsInverseOf }= \\
& \{(\emptyset, \emptyset), \\
& (\{(0,0)\},\{(0,0)\}),(\{(0,1)\},\{(0,1)\}),(\{(1,0)\},\{(1,0)\}),(\{(1,1)\},\{(1,1)\}), \\
& (\{(0,0),(0,1)\},\{(0,0),(0,1)\}),(\{(0,0),(1,0)\},\{(0,0),(1,0)\}), \\
& (\{(0,0),(1,1)\},\{(0,0),(1,1)\}),(\{(0,1),(1,0)\},\{(0,1),(1,0)\}), \\
& (\{(0,1),(1,1)\},\{(0,1),(1,1)\}),(\{(1,0),(1,1)\},\{(1,0),(1,1)\}), \\
& (\{(0,0),(0,1),(1,0)\},\{(0,0),(0,1),(1,0)\}), \\
& (\{(0,0),(0,1),(1,1)\},\{(0,0),(0,1),(1,1)\}), \\
& (\{(0,0),(1,0),(1,1)\},\{(0,0),(1,0),(1,1)\}), \\
& (\{(0,1),(1,0),(1,1)\},\{(0,1),(1,0),(1,1)\}), \\
& (\{(0,0),(0,1),(1,0),(1,1)\},\{(0,0),(0,1),(1,0),(1,1)\})\}
\end{aligned}
$$

