- Problem DM-3.5-14 Lex R be the relation on $\{a, b, c, d, e, f, g\}$ defined as

$$
R=\{(a, b),(b, c),(c, a),(d, e),(e, f),(f, g)\}
$$

Find the smallest integers m and n such that $0<m<n$ and $R^{m}=R^{n}$. Identify the transitive closure of R as well as the transitive, reflexive, and symmetric closure of R.

Solution. Let $X=\{a, b, c, d, e, f, g\}$. Then

$$
\begin{aligned}
& I d_{X}=R^{0}=\{(a, a),(b, b),(c, c),(d, d),(e, e),(f, f),(g, g)\} \\
& R^{-1}=\{(a, c),(b, a),(c, b),(e, d),(f, e),(g, f)\} \\
& R^{2}=\{(a, c),(b, a),(c, b),(d, f),(e, g)\} \\
& R^{3}=\{(a, a),(b, b),(c, c),(d, g)\} \\
& R^{4}=\{(a, b),(b, c),(c, a)\} \\
& R^{5}=\{(a, c),(b, a),(c, b)\} \\
& R^{6}=\{(a, a),(b, b),(c, c)\} \\
& R^{7}=\{(a, b),(b, c),(c, a)\}=R^{4} \\
& R^{8}=\{(a, c),(b, a),(c, b)\}=R^{5} \\
& R^{9}=\{(a, a),(b, b),(c, c)\}=R^{6}
\end{aligned}
$$

Thus, $m=4$ and $n=7$. In general, $R^{3 k-2}=R^{4}, R^{3 k-1}=R^{5}$ and $R^{3 k}=R^{6}$ for $k \geq 2$. Therefore, the transitive closure of R is

$$
\begin{aligned}
R^{+}= & \{(a, a),(a, b),(a, c),(b, a),(b, b),(b, c),(c, a),(c, b),(c, c),(d, e),(d, f),(d, g), \\
& (e, f),(e, g),(f, g)\}
\end{aligned}
$$

Also, the reflexive and transitive closure of R is

$$
\begin{aligned}
R^{*}= & R^{+} \cup I d_{X} \\
= & \{(a, a),(a, b),(a, c),(b, a),(b, b),(b, c),(c, a),(c, b),(c, c),(d, d),(d, e),(d, f), \\
& (d, g),(e, e),(e, f),(e, g),(f, f),(f, g),(g, g)\}
\end{aligned}
$$

Finally, the transitive, reflexive, and symmetric closure of R is

$$
\begin{aligned}
R^{*} \cup\left(R^{*}\right)^{-1}= & \{(a, a),(a, b),(a, c),(b, a),(b, b),(b, c),(c, a),(c, b),(c, c),(d, d), \\
& (d, e),(d, f),(d, g),(e, e),(e, d),(e, f),(e, g),(f, d),(f, e),(f, f), \\
& (f, g),(g, d),(g, e),(g, f),(g, g)\}
\end{aligned}
$$

