- Problem DM-3.7-14 There is an old, fallacious proof that if a relation is both symmetric and transitive, it is reflexive. We give this "proof" below. What is the error?

Suppose R is a symmetric and transitive relation on a set X. Pick an $x \in X$. We need to show $x R x$. So, take any y where $x R y$. By symmetry, it follows that $y R x$. By transitivity, it follows that $x R x$.

Solution. Let R be a symmetric and transitive relation on set X. To show that R is reflexive (i.e., $x R x$ for every $x \in X$), the proof is based on the assumption that there is an element $y \in X$ such that $x R y$. However, this is not true for any symmetric and transitive relation R. For example, consider $X=\{1,2,3\}$ and $R=\{(1,1),(1,2),(2,1),(2,2)\}$. It is clear that R is symmetric and transitive on X, but R is not reflexive since $(3,3) \notin R$.

