- Problem DM-3.7-16(a) For $k, n_{1}, n_{2}, m_{1}, m_{2} \in \mathbb{N}$, show that if

$$
n_{1} \equiv n_{2}(\bmod k)
$$

and

$$
m_{1} \equiv m_{2}(\bmod k)
$$

then

$$
n_{1}+m_{1} \equiv n_{2}+m_{2}(\bmod k)
$$

and

$$
n_{1} \cdot m_{1} \equiv n_{2} \cdot m_{2}(\bmod k)
$$

Proof. Suppose that $n_{1} \equiv n_{2}(\bmod k)$ and $m_{1} \equiv m_{2}(\bmod k)$. This means that $k \mid\left(n_{1}-n_{2}\right)$ and $k \mid\left(m_{1}-m_{2}\right)$. We now assume that $n_{1}-n_{2}=k \cdot s$ and $m_{1}-m_{2}=k \cdot t$ for some integers $s, t \in \mathbb{Z}$.
(1) We first show that $n_{1}+m_{1} \equiv n_{2}+m_{2}(\bmod k)$. Obviously, $\left(n_{1}+m_{1}\right)-\left(n_{2}+m_{2}\right)=$ $\left(n_{1}-n_{2}\right)+\left(m_{1}-m_{2}\right)=k \cdot s+k \cdot t=k \cdot(s+t)$. Thus, $k \mid\left(n_{1}+m_{1}\right)-\left(n_{2}+m_{2}\right)$, which implies that $n_{1}+m_{1} \equiv n_{2}+m_{2}(\bmod k)$.
(2) Next, we prove that $n_{1} \cdot m_{1} \equiv n_{2} \cdot m_{2}(\bmod k)$ as follows. Since $n_{1}-n_{2}=k \cdot s$, we have

$$
\begin{equation*}
m_{1}\left(n_{1}-n_{2}\right)=m_{1} \cdot k \cdot s \tag{1}
\end{equation*}
$$

Similarly, since $m_{1}-m_{2}=k \cdot t$, we have

$$
\begin{equation*}
n_{2}\left(m_{1}-m_{2}\right)=n_{2} \cdot k \cdot t \tag{2}
\end{equation*}
$$

By (1) and (2), $n_{1} \cdot m_{1}-n_{2} \cdot m_{2}=k\left(m_{1} \cdot s+n_{2} \cdot t\right)$. Thus, $k \mid\left(n_{1} \cdot m_{1}-n_{2} \cdot m_{2}\right)$, which implies that $n_{1} \cdot m_{1} \equiv n_{2} \cdot m_{2}(\bmod k)$.

