▶ Problem DM-3.7-16(b) Problem DM-3.7-16(a) says that if we take two equivalence classes [m] and [n], then we can unambiguously define [m] + [n] and $[m] \cdot [n]$. Pick any $m_1 \in [m]$ and any $n_1 \in [n]$, and define

$$[m] + [n] \equiv [m_1 + n_1]$$

and

 $[m] \cdot [n] \equiv [m_1 \cdot n_1]$

The definition is unambiguous since it doesn't matter which m_1 and n_1 we pick. Find the addition and multiplication tables for the equivalence classes of $\equiv \pmod{4}$ and $\equiv \pmod{5}$. (Hint: for both $\equiv \pmod{4}$ and $\equiv \pmod{5}$, your answer should include

$$[0] + [0] \equiv [0], [0] + [1] \equiv [1], [0] \cdot [0] \equiv [0]$$

and

$$[1] \cdot [1] \equiv [1]$$

but, for $\equiv \pmod{4}$,

$$[2] + [2] \equiv [0]$$

whereas, that will be false for $\equiv \pmod{5}$.)

Proof.

The addition and multiplication tables for the equivalence classes of $\equiv \pmod{4}$

+	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

•	[0]	[1]	[2]	[3]
[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]
[2]	[0]	[2]	[0]	[2]
[3]	[0]	[3]	[2]	[1]

The addition and multiplication tables for the equivalence classes of $\equiv \pmod{5}$

+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

•	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]
[2]	[0]	[2]	[4]	[1]	[3]
[3]	[0]	[3]	[1]	[4]	[2]
[4]	[0]	[4]	[3]	[2]	[1]