- Problem DM-3.9-6 Let

$$
X=\{-5,-4,-3,-2,-1,0,1,2,3,4,5\} .
$$

For $x, y \in X$, set $x R y$ (i.e., $(x, y) \in R)$ if $x^{2}<y^{2}$ or $x=y$. Show that R is a partial ordering on X. Draw a diagram of R.

Proof. For proving R is a partial ordering on X, we will show that R is reflexive, antisymmetric, and transitive.

Reflexive: For each $x \in X,(x, x) \in R$ by definition of R.
Antisymmetric: Suppose $(x, y) \in R$ and $x \neq y$. Then, it follows from definition that $x^{2}<y^{2}$. Since $y \neq x$ and $y^{2} \not \leq x^{2}$, this implies $(y, x) \notin R$.

Transitive: Let $x, y, z \in X$. Suppose $(x, y) \in R$ and $(y, z) \in R$. We now show that $(x, z) \in R$ according to the following four cases:

Case 1: $x=y$ and $y=z$. Then $x=z$, so $(x, z) \in R$.
Case 2: $x=y$ and $y^{2}<z^{2}$. Then $x^{2}<z^{2}$, so $(x, z) \in R$.
Case 3: $x^{2}<y^{2}$ and $y=z$. Then $x^{2}<z^{2}$, so $(x, z) \in R$.
Case 4: $x^{2}<y^{2}$ and $y^{2}<z^{2}$. Then $x^{2}<z^{2}$, so $(x, z) \in R$.

Since R is reflexive, antisymmetric, and transitive, R is a partial order. In addition, we show the diagram of R as follows.

