- Problem DM-6.6-14 Prove that for any graph G on six vertices, either G or \bar{G} contains a triangle (i.e., a cycle on three vertices).

Proof. Let G be any graph on six vertices labeled by $v_{1}, v_{2}, \ldots, v_{6}$. It is clear that $G \cup \bar{G}=K_{6}$ (a complete graph on six vertices). Suppose that G has each edge colored by red and \bar{G} has each edge colored by blue. Then, the union of G and \bar{G} forms a red-blue coloring of K_{6}. We now show that we can find 3 vertices in K_{6} such that the 3 edges joining them are the same color.

Consider some vertex v_{1} of K_{6}. Since v_{1} is incident with five edges, it follows by the Pigeonhole Principle that at least three of these five edges are colored the same, say red. Suppose that $\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right),\left(v_{1}, v_{4}\right)$ are red edges, as shown in the following Figure.

If any of the edges $\left(v_{2}, v_{3}\right),\left(v_{2}, v_{4}\right)$ ans $\left(v_{3}, v_{4}\right)$ is colored red, then we have a red K_{3}; otherwise, all of these edges are colored blue, and a blue K_{3} is formed.

