▶ Problem DM-6.6-14 Prove that for any graph G on six vertices, either G or \overline{G} contains a triangle (i.e., a cycle on three vertices).

Proof. Let G be any graph on six vertices labeled by v_1, v_2, \ldots, v_6 . It is clear that $G \cup \overline{G} = K_6$ (a complete graph on six vertices). Suppose that G has each edge colored by red and \overline{G} has each edge colored by blue. Then, the union of G and \overline{G} forms a red-blue coloring of K_6 . We now show that we can find 3 vertices in K_6 such that the 3 edges joining them are the same color.

Consider some vertex v_1 of K_6 . Since v_1 is incident with five edges, it follows by the Pigeonhole Principle that at least three of these five edges are colored the same, say red. Suppose that $(v_1, v_2), (v_1, v_3), (v_1, v_4)$ are red edges, as shown in the following Figure.

If any of the edges $(v_2, v_3), (v_2, v_4)$ and (v_3, v_4) is colored red, then we have a red K_3 ; otherwise, all of these edges are colored blue, and a blue K_3 is formed.