- Problem DM-6.6-40 Let $G=(V, E)$ be a graph with $|V| \geq 3$. Prove that if the degree of each vertex in G is at least $|V| / 2$, then G is Hamiltonian.

Proof. Let G be a graph with n vertices (i.e., $n=|V|$). If $n=3$, then the condition on G implies that G is isomorphic to K_{3}, and hence G is hamiltonian. We may assume, therefore, that $n \geq 4$.

Let $P=\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ be a longest path in G (see the following figure). Then every neighbor of v_{1} and every neighbor of v_{k} is on P; otherwise, there would be a longer path than P in G. Consequently, $k \geq 1+\frac{n}{2}$.

In the following, we show that there must be some vertex v_{i}, where $2 \leq i \leq k$, such that v_{1} is adjacent to v_{i}, and v_{k} is adjacent to v_{i-1}. If this were not the case, then, whenever v_{1} is adjacent to a vertex v_{i}, the vertex v_{k} is not adjacent to v_{i-1}. Since at least $\frac{n}{2}$ vertices on P are adjacent to v_{1}, at least $\frac{n}{2}$ of the $n-1$ vertices different from v_{k} on P are not adjacent to v_{k}. Hence, $\operatorname{deg}\left(v_{k}\right) \leq(n-1)-\frac{n}{2}<\frac{n}{2}$, which contradicts the fact that $\operatorname{deg}\left(v_{k}\right) \geq \frac{n}{2}$. Therefore, as we claimed, there must be a vertex v_{i} adjacent to v_{1}, and v_{i-1} is adjacent to v_{k} (see the following figure).

We now see that G has a cycle $C=\left(v_{1}, v_{i}, v_{i+1}, \ldots, v_{k-1}, v_{k}, v_{i-1}, v_{i-2}, \ldots, v_{2}, v_{1}\right)$ that contains all the vertices of P. If C contains all the vertices of G (i.e., $k=n$), then C is a Hamiltonian cycle, and the proof is complete. Otherwise, there is some vertex u of G that is not on C. By hypothesis, $\operatorname{deg}(u) \geq \frac{n}{2}$. Since P contains at least $1+\frac{n}{2}$ vertices, there are fewer than $\frac{n}{2}$ vertices not on C. This implies that u must be adjacent to a vertex v that lies on C. However, the edge (u, v) together with the cycle C contain a path whose length is greater than that of P, which is impossible. Thus, C contains all vertices of G, and G is Hamiltonian.

