- Problem DM-6.9-4 Let G be a graph. Prove that if G is disconnected, then \bar{G} is connected.

Proof. Suppose that $G=(V, E)$ is a disconnected graph. Clearly, G must contain at least two vertices. Let $x, y \in V$ belong to different connected components of G. Then no vertex in the set $V-\{x, y\}$ is adjacent to both x and y in G. We now consider $\bar{G}=\left(V, E^{\prime}\right)$. First, it is obvious that $(x, y) \in E^{\prime}$. Second, any other vertex z is adjacent to at least one of x and y in \bar{G} (To see this, we suppose to the contrary that z is not adjacent to both x and y in \bar{G}. This leads to a contradiction that $z \in V-\{x, y\}$ is adjacent to both x and y in G.)

In the following, we will show that any two vertex z and w in \bar{G} are connected by a path, and thus \bar{G} is connected. Obviously, if both z and w are adjacent to x (respectively, to y) in \bar{G}, then $z-x-w$ (respectively, $z-y-w$) is a path connecting z and w in \bar{G}. Thus, we only need to consider that neither x nor y is adjacent to both z and w in \bar{G}. In this case, form the previous argument we have shown that either $(z, x),(w, y) \in E^{\prime}$ or $(z, y),(w, x) \in E^{\prime}$. The former case implies that $z-x-y-w$ is a path connecting z and w in \bar{G}, and the latter case implies that $z-y-x-w$ is a path connecting z and w in \bar{G}.

