▶ Problem 0.2-21 Let x be a real number. Find a necessary and sufficient condition for $x + \frac{1}{x} \ge 2$. Prove your answer.

Proof. We assert that $x + \frac{1}{x} \ge 2$ if and only if x > 0.

 (\longrightarrow) We offer a proof by contradiction. Suppose $x + \frac{1}{x} \ge 2$ but $x \le 0$. If x = 0, then $\frac{1}{x}$ is not defined, so x < 0. In this case, however, $x + \frac{1}{x} < 0$, a contradiction.

 (\longleftarrow) Conversely, assume that x > 0. Note that $(x-1)^2 \ge 0$ implies $x^2 - 2x + 1 \ge 0$, and thus $x^2 + 1 \ge 2x$. Division by the positive number x gives $x + \frac{1}{x} \ge 2$ as required. \Box