▶ Problem 0.2-36 Suppose f(n) is a polynomial such that f(n) is a prime number for all $n \ge 0$. Show that f(n) = p for some prime p.

Proof. We suppose the the statement "f(n) = p for some prime p" is false (i.e., f is not a constant function for prime p) and let $f(n) = a_0 + a_1n + a_2n^2 + \cdots + a_tn^t$ for some $t \ge 1$. Since f(n) is prime for all $n \ge 0$, $f(0) = a_0$ is a prime. Clearly, $f(n) = a_0 + ng(n)$ where $g(n) = a_1 + a_2n + \cdots + a_tn^{t-1}$. Thus, $f(a_0n) = a_0 + a_0ng(a_0n)$ is a prime. However, the right hand side is divisible by the prime a_0 . This means that $g(a_0n) = 0$, contradicting the fact that polynomial has only finitely many roots.