▶ Problem 2.3-10 Define  $\mathcal{R}$  on  $\mathbf{R}$  by  $(x, y) \in \mathcal{R}$  if and only if  $1 \leq |x| + |y| \leq 2$ .

- (a) Make a sketch in the Cartesian plane showing the region of  $\mathbf{R}^2$  defined by  $\mathcal{R}$ .
- (b) Show that  $\mathcal{R}$  is neither reflexive nor transitive.
- (c) Is  $\mathcal{R}$  symmetric? Is it antisymmetric? Explain.

Solution. (a)



(b) The relation is not reflexive because, for example,  $(0,0) \notin \mathcal{R}$ . It is not transitive because, for example,  $(2,0) \in \mathcal{R}$  and  $(0,1) \in \mathcal{R}$  but  $(2,1) \notin \mathcal{R}$ .

(c) The relation is symmetric since if  $(x, y) \in \mathcal{R}$ , then  $1 \leq |x| + |y| \leq 2$ , so  $1 \leq |y| + |x| \leq 2$ , and thus  $(y, x) \in \mathcal{R}$ . It is not antisymmetric since, for example,  $(0, 1) \in \mathcal{R}$  and  $(1, 0) \in \mathcal{R}$ , but  $0 \neq 1$ .