- ▶ **Problem 2.4-04** Let $A = \{1, 2, 3, 4, 5, 6\}$ and let $S = \mathcal{P}(A)$, the power set of A.
 - (a) For $a, b \in S$, define $a \sim b$ if a and b have the same number of elements. Prove that \sim defines an equivalence relation on S.
 - (b) How many equivalence classes are there? List one element from each equivalence class.

Proof. (a) To show that \sim is an equivalence on S, we verify the reflexive, symmetric, and transitive as follows.

(i). **Reflexive** : If $a \in S$, then a and a have the same number of elements, so $a \sim a$.

(ii). Symmetric : For any $a, b \in S$, if $a \sim b$ then a and b have the same number of elements, so b and a have the same number of elements. Thus $b \sim a$.

(iii). **Transitive** : For any $a, b, c \in S$, if $a \sim b$ and $b \sim c$, then a and b have the same number of elements, and b and c have the same number of elements. This implies that a and c have the same number of elements. Thus, $a \sim c$.

(b) There are seven equivalence classes, representing by \emptyset , {1}, {1,2}, {1,2,3}, {1,2,3,4}, {1,2,3,4}, {1,2,3,4,5}, {1,2,3,4,5,6}.