▶ Problem 3-1-26 Let S be a set containing the number 5. Let $A = \{f : S \to S\}$ be the set of all functions $S \to S$. For $f, g \in A$, define $f \sim g$ if f(5) = g(5).

(a) Prove that \sim defines an equivalence relation on A.

(b) Find the equivalence class of $f = \{(5, a), (a, b), (b, b)\}$ in the case $S = \{5, a, b\}$.

Proof. (a) To show that \sim is an equivalence on A, we verify the reflexive, symmetric, and transitive as follows.

(i). **Reflexive** : If $f \in A$, then f(5) = f(5), so $f \sim f$.

(ii). Symmetric : For any $f, g \in A$, if $f \sim g$ then f(5) = g(5), so g(5) = f(5). Thus $g \sim f$.

(iii). Transitive : For any $f, g, h \in \mathbb{Z}$, if $f \sim g$ and $g \sim h$ then f(5) = g(5) and g(5) = h(5). Thus, f(5) = g(5) = h(5) and $f \sim h$.

(b) The equivalence class of f is $\overline{f} = \{g : S \to S | g(5) = f(5) = a\}$. Since there are three possible images for each of g(a) and g(b), there are altogether 9 functions in \overline{f} , namely,

$$f_{1} = \{(5, a), (a, 5), (b, 5)\}, \quad f_{2} = \{(5, a), (a, 5), (b, a)\}, \quad f_{3} = \{(5, a), (a, 5), (b, b)\}, \\ f_{4} = \{(5, a), (a, a), (b, 5)\}, \quad f_{5} = \{(5, a), (a, a), (b, a)\}, \quad f_{6} = \{(5, a), (a, a), (b, b)\}, \\ f_{7} = \{(5, a), (a, b), (b, 5)\}, \quad f_{8} = \{(5, a), (a, b), (b, a)\}, \quad f_{9} = \{(5, a), (a, b), (b, b)\}.$$