▶ Problem 4.3-18(b)(c)

- (b) Is $2^{91} 1$ prime? Explain your answer.
- (c) Show that if $2^n 1$ is prime then necessarily n is prime.

Solution.

- (b) No, because $2^{91} 1 = (2^{13} 1)(2^{78} + 2^{65} + 2^{52} + 2^{39} + 2^{26} + 2^{13} + 1)$.
- (c) If n is not a prime, we write n = rs for 1 < r, s < n. Then $2^n 1 = 2^{rs} 1 = (2^r 1)(2^{r(s-1)} + 2^{r(s-2)} + \dots + 2^r + 1)$ is not a prime, a contradiction.