▶ Problem 4.2-12(g)(j) In each of the following cases, find the greatest common divisor of a and b and express it in the form ma + nb for suitable integers m and n.

(g)
$$a = -3719$$
 and $b = 8416$.

(j)
$$a = 12345$$
 and $b = 54321$.

Solution. (g)

The last nonzero remainder is 1, so $gcd(8416, 3719) = 1 = (1715) \times (8461) + (-3881) \times (3719)$. Thus, $gcd(-3719, 8416) = 1 = (3881) \times (-3719) + (1715) \times (8461)$.

(j)

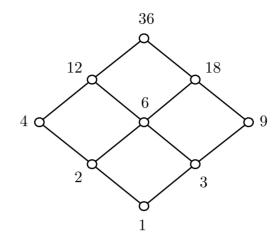
Since the last nonzero remainder is 3, $gcd(12345, 54321) = 3 = (-822) \times (54321) + (3617) \times (12345)$.

▶ **Problem 4.2-20** If $k \in \mathbb{N}$, prove that gcd(3k + 2, 5k + 3) = 1.

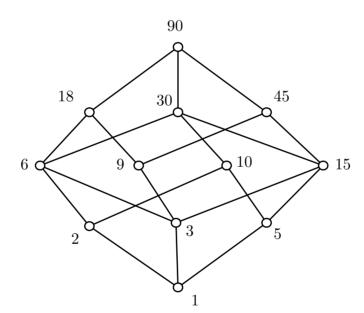
Proof. Let x be the greatest common divisor of 3k + 2 and 5k + 3 for any $k \in \mathbb{N}$. Then, x|3k+2 and x|5k+3. Clearly, x|5(3k+2) and x|3(5k+3), and it further implies x|[5(3k+2)-3(5k+3)]. Thus x|1. From the fact that 1 can be divides by an integer x, we have x=1, and so $\gcd(3k+2,5k+3)=1$.

▶ Problem 4.2-35(c)(d) Let n be a natural number, n > 1. Let $A = \{a \in \mathbb{N} \mid a \mid n\}$. Draw the Hasse diagram associated with the poset (A, \mid) for n = 36 and n = 90.

Solution. (c)



(d)



► Problem 4.3-18(b)(c)

- (b) Is $2^{91} 1$ prime? Explain your answer.
- (c) Show that if $2^n 1$ is prime then necessarily n is prime.

Solution.

(b) No, because
$$2^{91} - 1 = (2^{13} - 1)(2^{78} + 2^{65} + 2^{52} + 2^{39} + 2^{26} + 2^{13} + 1)$$
.

(c) If
$$n$$
 is not a prime, we write $n = rs$ for $1 < r, s < n$. Then $2^n - 1 = 2^{rs} - 1 = (2^r - 1)(2^{r(s-1)} + 2^{r(s-2)} + \cdots + 2^r + 1)$ is not a prime, a contradiction.

>	Problem 4.3-35	Let $a, b,$ and c be integers each relatively prime to another integers	er
n.	Prove that the pro	duct abc is relatively prime to n .	

Proof. If abc and n are not relatively prime, then there exists a prime p such that p|abc and p|n. By Corollary 4.3.8, p|a or p|b| or p|c. In the first case, p|a and p|n contradict gcd(a, n) = 1. The other two cases are similar.

- ▶ Problem 4.3-32(b)(c) Let a and b be integers. Let p be a prime. Answer true or false and explain:
- (b) If p|a and $p|(a^2 + b^2)$, then p|b.
- (c) If $p|(a^9 + a^{17})$, then p|a.

Solution. (b) <u>True</u>. Since p|a, it implies $p|a^2$. Now, $p|a^2$ and $p|(a^2 + b^2)$ forces $p|b^2$. Then, by Proposition 4.3.7, we conclude that p|b.

(c) <u>False</u>. Consider p = 257 and a = 2. Clearly, p is a prime. Then $2^9 + 2^{17} = 131584$ and $257|(2^9 + 2^{17})$. However, $257 \not | 2$.

▶ Problem 4.3-35

Suppose p and p+2 are twin primes and p>3. Prove that 6|(p+1).

Proof. Since p and p+2 are primes and p>3, it implies that p+1 is an even integer, i.e., 2|(p+1). Also, we have known that there is a multiple of 3 in any three consecutive positive integers p, p+1 and p+2. Again, by the fact that p and p+2 are primes, it must be 3|(p+1). Therefore, we have 6|(p+1).

Another Proof. Write p + 1 = 6q + r with $0 \le r < 6$ for some integer q. Consider the following cases.

If r = 1, then p = 6q, contradicting that p is a prime.

If r = 2, then p = 6q + 1, so p + 2 = 6q + 3. Thus, 3|(p + 2), contradicting that p + 2 is a prime.

If r = 3, then p = 6q + 2 is divisible by 2, contradicting that p is a prime.

If r = 4, then p = 6q + 3 is divisible by 3, contradicting that p is a prime.

If r = 5, then p = 6q + 4 is divisible by 2, contradicting that p is a prime.

Therefore, the only possibility is that r = 0, that is, 6|(p+1).

- ▶ Problem 4.4-9(i)(j) Find all integers x, $0 \le x < n$, satisfying each of the following congruences mod n. If no such x exists, explain why not.
- (b) $65x \equiv 27 \pmod{n}, n = 169.$
- (c) $4x \equiv 320 \pmod{n}, n = 592.$

Solution. (i) No x exists. If $65x \equiv 27 \pmod{169}$, then 169|(65x-27), so 13|(65x-27). Since 13|65x, it implies 13|27, a contradiction.

(j) If $4x \equiv 320 \pmod{592}$, then 4x = 320 + 592k for some $k \in \mathbb{Z}$. That is, x = 80 + 148k. The value of x are 80, 288, 376, 524.

▶ **Problem 4.4-10** Given integer a, b, c, d, x and a prime p, suppose $(ax+b)(cx+d) \equiv 0 \pmod{p}$. Prove that $ax + b \equiv 0 \pmod{p}$ or $cx + d \equiv 0 \pmod{p}$.

Proof. $(ax + b)(cx + d) \equiv 0 \pmod{p}$ implies P|(ax + b)(cx + d). Since p is prime, by Proposition 4.3.7, we conclude that p|(ax + b) or p|(cx + d). The first case says that $ax + b \equiv 0 \pmod{p}$ and the second that $cx + d \equiv 0 \pmod{p}$, given the desired result. \square

▶ Problem 4.4-11(d)

Find all integers x and y, $0 \le x, y < n$, that satisfy each of the following pair of congruences. If no x, y exist, explain why not.

$$\begin{cases} 7x + 2y \equiv 3 \pmod{n} & n = 15 \\ 9x + 4y \equiv 6 \pmod{n} \end{cases}$$

Solution. Multiply the first congruence by 2 to get $14x + 4y \equiv 6 \pmod{15}$. Subtracting the second congruence gives $5x \equiv 0 \pmod{15}$, so x = 0, 3, 6, 9 or 12.

If
$$x = 0$$
, then $2y \equiv 3 \pmod{15}$, and so $y = 9$.

If
$$x = 3$$
, then $2y \equiv 3 - 21 = -18 \equiv 12 \pmod{15}$, and so $y = 6$.

If
$$x = 6$$
, then $2y \equiv 3 - 42 = -39 \equiv 6 \pmod{15}$, and so $y = 3$.

If
$$x = 9$$
, then $2y \equiv 3 - 63 = -60 \equiv 0 \pmod{15}$, and so $y = 0$.

If
$$x = 12$$
, then $2y \equiv 3 - 84 = -81 \equiv 9 \pmod{15}$, and so $y = 12$.

▶ Problem 4.4-11(e)

Find all integers x and y, $0 \le x, y < n$, that satisfy each of the following pair of congruences. If no x, y exist, explain why not.

$$\begin{cases} 3x + 5y \equiv 14 \pmod{n} & n = 28 \\ 5x + 9y \equiv 6 \pmod{n} \end{cases}$$

Solution. Multiply the first congruence by 5 and the second by 3 gives

$$\begin{cases} 15x + 25y \equiv 70 \equiv 14 \pmod{28} \\ 15x + 27y \equiv 18 \pmod{28}. \end{cases}$$

Subtracting the first congruence from the second gives $2y \equiv 4 \pmod{28}$. Thus, y = 2 or y = 16.

If
$$y = 2$$
, then $3x \equiv 14 - 10 = 4 \pmod{28}$, and so $x = 20$.

If
$$y = 16$$
, then $3x \equiv 14 - 80 = -66 \equiv 18 \pmod{28}$, and so $x = 6$.

▶ Problem 4.4-16 Prove that an integer $(a_{n-1}a_{n-2}\cdots a_0)_{10}$ is divisible by 11 if and only if $a_0+a_2+a_4+\cdots\equiv a_1+a_3+a_5+\cdots\pmod{11}$. [Hint: $10\equiv -1\pmod{11}$.]

Proof. From the hint $10 \equiv -1 \pmod{11}$ and Proposition 4.4.7, we note that

$$10^k \equiv (-1)^k \pmod{11}$$

for any natural number k. Since

$$(a_{n-1}a_{n-2}\cdots a_2a_1a_0)_{10} = a_{n-1}\cdot 10^{n-1} + a_{n-2}\cdot 10^{n-2} + \cdots + a_3\cdot 10^3 + a_2\cdot 10^2 + a_1\cdot 10 + a_0$$

we have

$$(a_{n-1}a_{n-2}\cdots a_2a_1a_0)_{10}$$

$$\equiv a_{n-1}\cdot (-1)^{n-1} + a_{n-2}\cdot (-1)^{n-2} + \cdots - a_3 + a_2 - a_1 + a_0 \pmod{11}.$$

and this is 0 (mod 11) if and only if $a_0 + a_2 + a_4 + \cdots \equiv a_1 + a_3 + a_5 + \cdots$ (mod 11). \square

▶ Problem 4.5-15 Does the test in (7) detect transposition errors: that is, will it notice if two (different) adjacent digits have ben interchange? Explain.

The check digit for Universal Product Codes is determined by the rule:

(7) $3(\text{sum of digits in odd positions}) + (\text{sum of digits in even positions}) \equiv 0 \pmod{10}$.

Solution. Suppose that $a_1-a_2a_3a_4a_5a_6-a_7a_8a_9a_{10}a_{11}-x$ is a valid universal product code. Thus,

$$A = 3(a_1 + a_3 + a_5 + a_7 + a_9 + a_{11}) + (a_2 + a_4 + a_6 + a_8 + a_{10} + x) \equiv 0 \pmod{10}$$

If a_2 and a_3 are transposed, the error will not be detected provided

$$B = 3(a_1 + a_2 + a_5 + a_7 + a_9 + a_{11}) + (a_3 + a_4 + a_6 + a_8 + a_{10} + x) \equiv 0 \pmod{10}$$

Now $A - B = 3(a_3 - a_2) + (a_2 - a_3) = 2(a_3 - a_2)$. So, if $a_3 - a_2 = 5$, we'll have $A - B \equiv 0 \pmod{10}$. Hence, $B \equiv A \equiv 0 \pmod{10}$ and the transposition will not be detected. We conclude that the test given by (7) does **not** detect errors due to the transposition of adjacent digits.

ightharpoonup Problem 4.5-18 Find the smallest nonnegative integer x that satisfies the given system of congruences.

$$x \equiv 1 \pmod{4}$$
$$x \equiv 8 \pmod{9}$$

$$x \equiv 10 \pmod{25}$$

Solution. We first solve $x \equiv 1 \pmod{4}$ and $x \equiv 8 \pmod{9}$.

Since
$$1 = 1 \cdot 9 + (-2) \cdot 4$$
, we have $x = 1 \cdot 1 \cdot 9 + (-2) \cdot 8 \cdot 4 = -55 \equiv 17 \pmod{36}$.

Then we solve $x \equiv 10 \pmod{25}$ and $x \equiv 17 \pmod{36}$.

Since
$$1 = 13 \cdot 25 + (-9) \cdot 36$$
, we have $x = 13 \cdot 17 \cdot 25 + (-9) \cdot 10 \cdot 36 = 2285 \equiv 485 \pmod{900}$.

Therefore,
$$x = 485$$
.

▶ **Problem 4.5-21(b)** Find a positive integer x such that $ab \equiv x$ modulo a suitable integer. Assuming that ab < 50000, find ab itself, if possible, and explain your reasoning. $a \equiv 7, b \equiv 7 \pmod{8}$ $a \equiv 9, b \equiv 8 \pmod{27}$ $a \equiv 29, b \equiv 18 \pmod{125}$

Solution.

$$ab \equiv 7 \cdot 7 \equiv 1 \pmod{8}$$

$$ab \equiv 9 \cdot 8 \equiv 18 \pmod{27}$$

$$ab \equiv 29 \cdot 18 \equiv 22 \pmod{125}$$
We first solve $ab \equiv 1 \pmod{8}$ and $ab \equiv 18 \pmod{27}$
Since $1 = 3 \cdot 27 + (-10) \cdot 8$, we obtain
$$ab \equiv 1 \cdot 3 \cdot 27 + 18 \cdot (-10) \cdot 8 = -1359 \equiv 153 \pmod{216}.$$
Then, we solve $ab \equiv 22 \pmod{125}$ and $ab \equiv 153 \pmod{216}$.
Since $1 = (-19) \cdot 125 + 11 \cdot 216$, we obtain
$$ab \equiv 153 \cdot (-19) \cdot 125 + 22 \cdot 11 \cdot 216 = -311103 \equiv 12897 \pmod{27000}.$$
Since $ab < 50000$, we have $x = 12897$ or $x = 39897$.

▶ Problem 4.5-21(c) Find a positive integer x such that $ab \equiv x$ modulo a suitable integer. Assuming that ab < 50000, find ab itself, if possible, and explain your reasoning. $a \equiv 1, b \equiv 2 \pmod 8$ $a \equiv 8, b \equiv 1 \pmod 27$ $a \equiv 55, b \equiv 82 \pmod {125}$

Solution.

```
ab \equiv 1 \cdot 2 \equiv 2 \pmod{8} ab \equiv 8 \cdot 1 \equiv 8 \pmod{27} ab \equiv 55 \cdot 82 \equiv 10 \pmod{125} We first solve ab \equiv 2 \pmod{8} and ab \equiv 8 \pmod{27} Since 1 = 3 \cdot 27 + (-10) \cdot 8, we obtain ab \equiv 2 \cdot 3 \cdot 27 + 8 \cdot (-10) \cdot 8 = -478 \equiv 170 \pmod{216}. Then, we solve ab \equiv 10 \pmod{125} and ab \equiv 170 \pmod{216}. Since 1 = (-19) \cdot 125 + 11 \cdot 216, we obtain ab \equiv 170 \cdot (-19) \cdot 125 + 10 \cdot 11 \cdot 216 = -379990 \equiv 25010 \pmod{27000}. Since ab < 50000, x = 25010 is the unique solution.
```

▶ Problem 4.5-23(b)(d)(e) Suppose p = 17, q = 23, and s = 5. How would you encode each of the following "messages"?

- (b) **HELP**
- (d) **BYE**
- (e) **NOW**

Solution.

$$r = p \cdot q = 17 \times 23 = 391.$$

(b) **HELP** corresponds to the number 08051216.

Thus, $E = (8051216)^5 \pmod{391} = 33$.

(d) **BYE** corresponds to the number 022505.

Thus, $E = (22505)^5 \pmod{391} = 97$.

(e) **NOW** corresponds to the number 141523.

Thus,
$$E = (141523)^5 \pmod{391} = 104$$
.

▶ Problem 4.5-25(b)

Suppose p = 17, q = 59, and s = 3. If you receive E = 926, what is the message?

Solution. We first note that $\gcd(3,16)=1$ and 11(3)+(-2)(16)=1, so a=11. Also, $\gcd(3,58)=1$ and 39(3)+(-2)(58)=1, so b=39. Then $E^a=926^{11}\equiv 8^{11}=8(8^2)^5\equiv 8\cdot 13^5\equiv 2\pmod{17}$, while $E^b=926^{39}\equiv 41^{39}=41(41^2)^{19}\equiv 41\cdot 29^{19}=41(29^3)(29^4)^4\equiv 41\cdot 22\cdot 48^4\equiv 41\cdot 22\cdot 3^2=8118\equiv 35\pmod{59}$. Thus,

$$E^a \equiv 2 \pmod{17}$$

$$E^a \equiv 35 \pmod{59}$$

Since 1 = 7(17) - 2(59), we have $E = 2 \cdot (-2) \cdot 59 + 35 \cdot 7 \cdot 17 = 3929 \equiv 920 \pmod{1003}$. The message is **IT**.