▶ Problem 10.1-13

- (a) Find a necessary and sufficient condition on natural numbers m and n in order for $K_{m,n}$ to be Eulerian. Prove your answer.
- (b) Find a necessary and sufficient condition on natural numbers m and n in order for $K_{m,n}$ to have an Eulerian trail. Assume $m \leq n$. Prove your answer.

Solution. (a) Since $K_{m,n}$ is connected, we seek only necessary and sufficient conditions for every vertex to be even. In $K_{m,n}$, every vertex in the bipartition set with m vertices has degree n and every vertex in the other bipartition set has degree m. Hence, $K_{m,n}$ is Eulerian if and only if m and n are both even.

(b) $K_{m,n}$ with $m \leq n$ has Eulerian trail if and only if the following conditions hold: (i) both m, n > 0 are even numbers; (ii) m = 1 and n = 2; or (iii) m = 2 and n is odd. Obviously, every Eulerian graph has a Eulerian trail. This shows that the condition (i) holds. Also, the condition (ii) is easy to verify. By Theorem 10.1.5, complete bipartite graphs with the specified conditions on m and n have Eulerian trail. Since $K_{m,n}$ has n vertices of degree m and m vertices of degree n, if m > 2, then each bipartition set contains more than two vertices (since $n \geq m$) so it is impossible for there to exist precisely two vertices of odd degree.