- Problem 10.2-16 [Ore's Theorem]

Suppose G is a graph with $n \geqslant 3$ vertices and that the sum of the degrees of any two nonadjacent vertices is at least n. Prove that G is Hamiltonian by starting with a path $P: v_{1} v_{2} \cdots v_{t}$ of greatest length, as in the proof of Dirac's Theorem, and then considering separately the cases where
(a) v_{1} and v_{t} are adjacent, and
(b) v_{1} and v_{t} are not adjacent

Proof. (b) Suppose that v_{1} and v_{t} are not adjacent. By hypothesis, $\operatorname{deg} v_{1}+\operatorname{deg} v_{t} \geqslant n$. As in the proof of Dirac's Theorem, we have known that every vertex adjacent to v_{1} (respectively, v_{t}) is in P. Now, we claim that there is a pair of vertices v_{k}, v_{k+1} in P, $1 \leqslant k<t$, such that v_{1} is adjacent to v_{k+1} and v_{t} is adjacent to v_{k}. Suppose that it is not the case. Then, every vertex of P adjacent to v_{1} would imply that its predecessor in P is not adjacent to v_{t}. Since every vertex adjacent to v_{1} is contained in P, at least $1+\operatorname{deg} v_{1}$ vertices in P are not adjacent to v_{t}. Hence, at most $n-1-\operatorname{deg} v_{1}$ vertices are adjacent to v_{k} in G. Therefore, $\operatorname{deg} v_{1}+\operatorname{deg} v_{t} \leqslant n-1$, a contradiction. It follows that $C: v_{1} v_{k+1} v_{k+2} \cdots v_{t} v_{k} v_{k-1} \cdots v_{1}$ is a cycle, and so there is a path of length t beginning at v_{k} and ending at v_{t}. The argument given in (a) for the case where v_{1} and v_{t} are adjacent now shows that C is Hamiltonian.

