▶ Problem 10.2-17

Suppose G is a graph with $n \ge 3$ vertices and at least $\binom{n-1}{2} + 2$ edges. Show that G is Hamiltonian.

Proof. By Ore's Theorem (see Problem 10.2.16), it is sufficient to show that the sum of the degrees of any two nonadjacent vertices is at least n. So, let u and v be any two nonadjacent vertices in the graph G = (V, E). If we delete u and v (and all edges incident with u or v), we are left with a graph G' with n - 2 vertices and $|E| - \deg u - \deg v$ edges. Clearly, G' has at most $\binom{n-2}{2}$ edges. Since

$$\binom{n-1}{2} + 2 - \deg u - \deg v \leq |E| - \deg u - \deg v \leq \binom{n-2}{2},$$

it implies

$$deg \ u + deg \ v \ \geqslant \ \binom{n-1}{2} - \binom{n-2}{2} + 2$$

$$= \ \frac{(n-1)(n-2)}{2} - \frac{(n-2)(n-3)}{2} + 2$$

$$= \ \frac{(n-2)\left[(n-1) - (n-3)\right]}{2} + 2$$

$$= \ (n-2) + 2$$

$$= \ n$$

and the result follows.

г	٦
L .	
L .	