- Problem 10.2-17

Suppose G is a graph with $n \geqslant 3$ vertices and at least $\binom{n-1}{2}+2$ edges. Show that G is Hamiltonian.

Proof. By Ore's Theorem (see Problem 10.2.16), it is sufficient to show that the sum of the degrees of any two nonadjacent vertices is at least n. So, let u and v be any two nonadjacent vertices in the graph $G=(V, E)$. If we delete u and v (and all edges incident with u or v), we are left with a graph G^{\prime} with $n-2$ vertices and $|E|-\operatorname{deg} u-\operatorname{deg} v$ edges. Clearly, G^{\prime} has at most $\binom{n-2}{2}$ edges. Since

$$
\binom{n-1}{2}+2-\operatorname{deg} u-\operatorname{deg} v \leqslant|E|-\operatorname{deg} u-\operatorname{deg} v \leqslant\binom{ n-2}{2}
$$

it implies

$$
\begin{aligned}
\operatorname{deg} u+\operatorname{deg} v & \geqslant\binom{ n-1}{2}-\binom{n-2}{2}+2 \\
& =\frac{(n-1)(n-2)}{2}-\frac{(n-2)(n-3)}{2}+2 \\
& =\frac{(n-2)[(n-1)-(n-3)]}{2}+2 \\
& =(n-2)+2 \\
& =n
\end{aligned}
$$

and the result follows.

