
I Problem 10.3-10

(a) Find the adjacency matrices A1 and A2 of the graphs G1 and G2 shown.
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(b) Explain why the function φ : G1 → G2 defined by

φ(v1) = u1, φ(v2) = u2, φ(v3) = u6, φ(v4) = u8,

φ(v5) = u4, φ(v6) = u3, φ(v7) = u7, φ(v8) = u5.

is an isomorphism.

(c) Find a permutation matrix P that corresponds to the isomorphism in (b) such that

PA1P
T = A2.

Solution. (a)

A1 =



0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 0 1
0 0 1 0 1 0 1 0
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0
0 0 0 1 0 1 0 1
1 0 1 0 0 0 1 0


, A2 =



0 1 0 1 1 0 0 0
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
1 0 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0


(b) The function φ is an isomorphism because if the vertices of G1 are relabeled, vi being

replaced by φ(vi) = ui, then the adjacency matrix of G1 relative to the ui’s is A2. (See

Theorem 10.3.3.)
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(c)

P =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0


�
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