- Problem 11.1-07

Solve the Chinese Postman Problem for the unweighted graph shown.

Solution. The six vertices of odd degree are A, B, C, D, E and F in the following figure.
Now, the sum of lengths of shortest paths for all partitions of pairs are given as follows.

Partition into pairs		Sum of lengths of shortest paths	
$\{A, B\},\{C, D\},\{E, F\}$	$2+3+1=6$	$\{A, B\},\{C, E\},\{D, F\}$	$2+3+2=7$
$\{A, B\},\{C, F\},\{D, E\}$	$2+3+1=6$	$\{A, C\},\{B, D\},\{E, F\}$	$3+2+1=6$
$\{A, C\},\{B, E\},\{D, F\}$	$3+3+2=8$	$\{A, C\},\{B, F\},\{D, E\}$	$3+4+1=8$
$\{A, D\},\{B, C\},\{E, F\}$	$4+3+1=8$	$\{A, D\},\{B, E\},\{C, F\}$	$4+3+3=10$
$\{A, D\},\{B, F\},\{C, E\}$	$4+4+3=11$	$\{A, E\},\{B, C\},\{D, F\}$	$5+3+2=10$
$\{A, E\},\{B, D\},\{C, F\}$	$5+2+3=10$	$\{A, E\},\{B, F\},\{C, D\}$	$5+4+3=12$
$\{A, F\},\{B, C\},\{D, E\}$	$6+3+1=10$	$\{A, F\},\{B, D\},\{C, E\}$	$6+2+3=11$
$\{A, F\},\{B, E\},\{C, D\}$	$6+3+3=12$		

So we see that one solution is to add copies of edges $A X, X B, C Y, Y Z, Z D$, and $E F$, as shown.

