▶ Problem 11.1-07

Solve the Chinese Postman Problem for the unweighted graph shown.

Solution. The six vertices of odd degree are A, B, C, D, E and F in the following figure. Now, the sum of lengths of shortest paths for all partitions of pairs are given as follows.

Partition into pairs		Sum of lengths of shortest paths	
$\{A, B\}, \{C, D\}, \{E, F\}$	2 + 3 + 1 = 6	${A,B}, {C,E}, {D,F}$	2 + 3 + 2 = 7
$\{A, B\}, \{C, F\}, \{D, E\}$	2 + 3 + 1 = 6	$\{A, C\}, \{B, D\}, \{E, F\}$	3 + 2 + 1 = 6
$\{A, C\}, \{B, E\}, \{D, F\}$	3 + 3 + 2 = 8	$\{A, C\}, \{B, F\}, \{D, E\}$	3 + 4 + 1 = 8
$\{A, D\}, \{B, C\}, \{E, F\}$	4 + 3 + 1 = 8	$\{A, D\}, \{B, E\}, \{C, F\}$	4 + 3 + 3 = 10
$\{A, D\}, \{B, F\}, \{C, E\}$	4 + 4 + 3 = 11	$\{A, E\}, \{B, C\}, \{D, F\}$	5 + 3 + 2 = 10
$\{A, E\}, \{B, D\}, \{C, F\}$	5 + 2 + 3 = 10	$\{A, E\}, \{B, F\}, \{C, D\}$	5+4+3=12
$\{A, F\}, \{B, C\}, \{D, E\}$	6 + 3 + 1 = 10	$\{A, F\}, \{B, D\}, \{C, E\}$	6 + 2 + 3 = 11
$\{A, F\}, \{B, E\}, \{C, D\}$	6 + 3 + 3 = 12		

So we see that one solution is to add copies of edges AX, XB, CY, YZ, ZD, and EF, as shown.

