▶ Problem 11.2-15

Consider the digraphs G_1, G_2 shown.

- (a) Find the adjacency matrix A_1 of G_1 and the adjacency matrix A_2 of G_2 .
- (b) Explain why the map $\phi: G_1 \to G_2$ defined by

 $\phi(v_1) = u_3, \ \phi(v_2) = u_4, \ \phi(v_3) = u_2, \ \phi(v_4) = u_5, \ \phi(v_5) = u_1$

is an isomorphism.

(c) Find the permutation matrix P that corresponds to ϕ and satisfies $PA_1P^T = A_2$.

- (d) Are these digraphs strongly connected?
- (e) Are these digraphs Eulerian?

Solution. (a)

$$A_{1} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \end{bmatrix}, \quad A_{2} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$

(b) With the vertices of G_1 relabeled according to ϕ , the adjacency matrix of G_1 becomes that of G_2 .

(c)

$$P = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

(d) The digraphs are not strongly connected. For instance, there is no path from v_5 to v_4 in G_1 and no path from u_1 to u_5 in G_2 .

(e) The digraphs are not Eulerian because they are not strongly connected. \Box