- Problem 11.2-15

Consider the digraphs G_{1}, G_{2} shown.

G_{1}

G_{2}
(a) Find the adjacency matrix A_{1} of G_{1} and the adjacency matrix A_{2} of G_{2}.
(b) Explain why the map $\phi: G_{1} \rightarrow G_{2}$ defined by

$$
\phi\left(v_{1}\right)=u_{3}, \quad \phi\left(v_{2}\right)=u_{4}, \quad \phi\left(v_{3}\right)=u_{2}, \quad \phi\left(v_{4}\right)=u_{5}, \quad \phi\left(v_{5}\right)=u_{1}
$$

is an isomorphism.
(c) Find the permutation matrix P that corresponds to ϕ and satisfies $P A_{1} P^{T}=A_{2}$.
(d) Are these digraphs strongly connected?
(e) Are these digraphs Eulerian?

Solution. (a)

$$
A_{1}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0
\end{array}\right]
$$

(b) With the vertices of G_{1} relabeled according to ϕ, the adjacency matrix of G_{1} becomes that of G_{2}.
(c)

$$
P=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

(d) The digraphs are not strongly connected. For instance, there is no path from v_{5} to v_{4} in G_{1} and no path from u_{1} to u_{5} in G_{2}.
(e) The digraphs are not Eulerian because they are not strongly connected.

