- Problem 12.1-11

(a) Given that a tree has 100 vertices of degree 1 and 20 of degree 6 and that one-half of the remaining vertices are of degree 4 and the rest of degree 2 , determine the number of vertices of degree 2 .
(b) Prove that a tree as specified in (a), except that the number of vertices of degree 1 must be less than 80 , cannot exist.

Solution. (a) Suppose that the tree T has n vertices. By Theorem 12.1.6, T has $n-1$ edges, so the sum of the degrees is $2(n-1)$. This gives

$$
100+20(6)+\frac{1}{2}(n-120)(4)+\frac{1}{2}(n-120)(2)=2(n-1) .
$$

Thus, $n=138$. The number of vertices of degree 2 is $\frac{1}{2}(138-120)=9$.
(b) Suppose that the tree T has n vertices and let k be the number of vertices of degree 1 in T. By assumption, $k<80$. Then,

$$
k+20(6)+\frac{1}{2}(n-120)(4)+\frac{1}{2}(n-120)(2)=2(n-1) .
$$

So $n=2 k-62$. We know that there are at least $k+20$ vertices in T, so $2 k-62 \geqslant k+20$. This implies $k \geqslant 82$, which contradicts to the assumption that $k<80$. This shows that no such a tree exists.

