▶ Problem 12.1-20

Let T be a tree with n vertices v_1, v_2, \ldots, v_n . Prove that the number of leaves in T is $2 + \sum_{\deg v_i \geqslant 3} [\deg v_i - 2]$.

Proof. Suppose that there are k_i vertices of degree i. Since $\sum \deg v_i$ is twice the number of edges in T, we have $k_1 + 2k_2 + 3k_3 + \cdots = 2(n-1)$. Since $k_1 + k_2 + \cdots = n$,

$$k_1 + 2k_2 + 3k_3 + \dots = 2(n-1) = 2(k_1 + k_2 + \dots - 1) = 2k_1 + 2k_2 + 2k_3 + \dots - 2.$$

Solving for k_1 , we get

$$k_1 = (3-2)k_3 + (4-2)k_4 + (5-2)k_5 + \dots + 2$$

$$= \sum_{\deg v=3} (3-2) + \sum_{\deg v=4} (4-2) + \sum_{\deg v=5} (5-2) + \dots + 2$$

$$= 2 + \sum_{\deg v_i \geqslant 3} [\deg v_i - 2]$$