- Problem 12.2-03

Let e be an edge of the complete graph K_{n}. Prove that the number of spanning trees of K_{n} that contain e is $2 n^{n-3}$.

Proof. K_{n} has n^{n-2} spanning trees each with $n-1$ edges. Hence the total number of all edges used in all spanning trees is $(n-1) n^{n-2}$. Now each of the $\binom{n}{2}$ edges in K_{n} is equally likely to be included in a spanning tree. Hence, the number of spanning trees containing e is $\frac{(n-1) n^{n-2}}{\binom{n}{2}}=2 n^{n-3}$.

