- Problem 13.1-20 (c)

Prove that every planar graph with $V \geqslant 4$ vertices has at least four vertices of degree $d \leqslant 5$.

Proof. We may assume that G is connected and there are just three vertices of degree at most 5. Then $\sum \operatorname{deg} v_{i} \geqslant 6(V-3)+3=6 V-15$, where " +3 " because G is connected, so there are no vertices of degree 0 . Since $\sum \operatorname{deg} v_{i}=2 E$ must be even and $\sum \operatorname{deg} v_{i}=$ $2 E \leqslant 6 V-12$, there are two cases to consider as follows:

Case 1: $\sum \operatorname{deg} v_{i}=2 E=6 V-14$. In this case, we note that G must have a vertex of degree 1 ; otherwise, $\sum \operatorname{deg} v_{i} \geqslant 6(V-3)+3(2)=6 V-12$. Let G^{\prime} be the graph obtained from G by deleting the vertex of degree 1 (and the edge incident with it). Clearly, G^{\prime} is still connected and planar. So, applying theorem 13.1.4 to G^{\prime}, we obtain $\sum \operatorname{deg} v_{i} \leqslant 6(V-1)-12=6 V-18$. Also, since G^{\prime} is obtained from G by removing one vertex and one edge, we have $\sum \operatorname{deg} v_{i}=(6 V-14)-2=6 V-16$, a contradiction.

Case 2: $\sum \operatorname{deg} v_{i}=2 E=6 V-12$. In this case, if there is a vertex of degree 1 in G, the same argument as in Case 1 would give a contradiction. Thus, there is a vertex of degree 2; otherwise, $\sum \operatorname{deg} v_{i} \geqslant 6(V-3)+3(3)=6 V-9$. Let G^{\prime} be the graph obtained from G by deleting the vertex of degree 2 (and the two edges incident with it). Clearly, G^{\prime} is planar. So, applying theorem 13.1.4 to G^{\prime}, if G^{\prime} is connected, we obtain $\sum \operatorname{deg} v_{i} \leqslant 6(V-1)-12=6 V-18$. On the other hand, if G^{\prime} is disconnected, then it contains two components. By the result of Exercise 13.1-19(b), we have $\sum \operatorname{deg} v_{i} \leqslant$ $6(V-1)-6(2)=6 V-18$. Also, since G^{\prime} is obtained from G by removing one vertex and two edges, we have $\sum \operatorname{deg} v_{i}=(6 V-12)-4=6 V-16$, a contradiction.

