- Problem 13.2-08 (b) (c)
(a) Let G be a connected graph with n vertices and n edge. Prove that $\chi(G) \leqslant 3$.
(b) Show that (a) remains true if G has $n+1$ edges.
(c) Does (a) remain true if G has $n+2$ edges? Explain.

Proof. (b) By the same reason of (a), we assume that G has more than 3 vertices and let T be a spanning tree of G. From Theorem 12.1.6, we know that T contains $n-1$ edges. Also, by Exercise $7(\mathrm{c})$, we know that $\chi(T)=2$. Since G has $n+1$ edges, $G=T \cup\{e, f\}$ for two edges e and f of G. If e and f have a common vertex v, then giving v a third color in T yields a 3-coloring of G, so $\chi(G) \leqslant 3$. On the other hand, since T contains no circuits, if $e=v_{1} v_{2}$ and $f=v_{3} v_{4}$ have no vertex in common, then one of edges $v_{1} v_{3}$, $v_{1} v_{4}, v_{2} v_{3}$, and $v_{2} v_{4}$ is not in T. If this edge is $v_{i} v_{j}$, then giving v_{i} and v_{j} the same third color yields a 3 -coloring of G.
(c) No. The complete graph on four vertices has $6=4+2$ edges, but $\chi\left(K_{4}\right)=4$.

