▶ Problem 13.2-13 Let $n \ge 4$ be a natural number. Let G be the graph that contains of the union of K_{n-3} and a 5-cycle C, together with all possible edges between the vertices of these graphs. Show that $\chi(G) = n$, yet G does not have K_n as a subgraph.

Proof. By coloring K_{n-3} with n-3 colors and C with another three, we obtain an n-coloring of G. Thus, $\chi(G) \leq 3$. On the other hand, K_{n-3} requires n-3 colors and none of which can be used for C since each vertex of C is adjacent to each vertex of K_{n-3} . Thus, $\chi(G) \geq 3$. This shows that the equality follows.

To show that G does not contain K_n as a subgraph. We suppose to the contrary. Then, at least three of the vertices in this subgraph must come from C (since K_{n-3} has only n-3 vertices). Thus, C would contain a triangle, contrary to the fact that C is a 5-cycle..