- Problem 9.2-09 (b)

Consider the graph shown below and answer the following questions.

(i) Makes a table that shows the least number of edges joining each pair of vertices in this graph. (Such a table displays the least number of stops required on air trips between cities in the region depicted by the graph.)
(ii) Add the numbers in each column of the table. Divide each column total by the degree of the corresponding vertex. These ratios are called accessibility indexes since they measure the relative accessibility of the cities (by air). Which city is the most accessible? Which is the least accessible?
(iii) Suppose a direct flight joining cities v_{1} and v_{3} is introduced. What is the the new beta index of the graph? What are the new accessibility indices? Which city is most accessible now? Which city is now least accessible?
(iv) Repeat part (iii), assuming a flight is introduced between cities v_{2} and v_{6} instead of between v_{1} and v_{3}.

Solution. (i)

	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}
v_{1}	0	1	2	2	2	3	3
v_{2}	1	0	1	1	1	2	2
v_{3}	2	1	0	2	2	3	3
v_{4}	2	1	2	0	2	1	2
v_{5}	2	1	2	2	0	2	1
v_{6}	3	2	3	1	2	0	1
v_{7}	3	2	3	2	1	1	0

(ii)

vertex	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}
column total	13	8	13	10	10	12	12
vertex degree	1	4	1	2	2	2	2
accessibility index	13	2	13	5	5	6	6

Here, v_{2} is the most accessible; v_{1} and v_{3} are the least accessible.
(iii)

New beta index $=\frac{8}{7}$;
New accessibility indices are $6,2,6,5,5,6,6$;
City v_{2} is still the most accessible, now v_{6} and v_{7} are tied with v_{1} and v_{3} for least accessible.
(iv)

New beta index $=\frac{8}{7}$;
New accessibility indices are $12,1.4,12,5,5,3,6$;
City v_{2} is still the most accessible, v_{1} and v_{3} are the least accessible.

