▶ Problem 9.2-09 (b)

Consider the graph shown below and answer the following questions.

- (i) Makes a table that shows the least number of edges joining each pair of vertices in this graph. (Such a table displays the least number of stops required on air trips between cities in the region depicted by the graph.)
- (ii) Add the numbers in each column of the table. Divide each column total by the degree of the corresponding vertex. These ratios are called *accessibility indexes* since they measure the relative accessibility of the cities (by air). Which city is the most accessible? Which is the least accessible?
- (iii) Suppose a direct flight joining cities v_1 and v_3 is introduced. What is the new beta index of the graph? What are the new accessibility indices? Which city is most accessible now? Which city is now least accessible?
- (iv) Repeat part (iii), assuming a flight is introduced between cities v_2 and v_6 instead of between v_1 and v_3 .

Solution. (i)

	v_1	v_2	v_3	v_4	v_5	v_6	v_7
v_1	0	1	2	2	2	3	3
v_2	1	0	1	1	1	2	2
v_3	2	1	0	2	2	3	3
v_4	2	1	2	0	2	1	2
v_5	2	1	2	2	0	2	1
v_6	3	2	3	1	2	0	1
v_7	3	2	3	2	1	1	0

vertex	v_1	v_2	v_3	v_4	v_5	v_6	v_7
column total	13	8	13	10	10	12	12
vertex degree	1	4	1	2	2	2	2
accessibility index	13	2	13	5	5	6	6

Here, v_2 is the most accessible; v_1 and v_3 are the least accessible.

(iii)

New beta index $=\frac{8}{7}$;

New accessibility indices are 6, 2, 6, 5, 5, 6, 6;

City v_2 is still the most accessible, now v_6 and v_7 are tied with v_1 and v_3 for least accessible.

(iv)

New beta index $=\frac{8}{7}$;

New accessibility indices are 12, 1.4, 12, 5, 5, 3, 6;

City v_2 is still the most accessible, v_1 and v_3 are the least accessible.