- Problem 9.2-27

Suppose a graph has nine vertices each of degree 5 or 6 . Prove that at least five vertices have degree 6 or at least six vertices have degree 5 .

Proof. Let G be such a graph with k vertices of degree 6 and suppose $k<5$. Then, either $k=4$ or $k \leqslant 3$. For the former case, it implies that there exist $9-4=5$ vertices of degree 5 in G, which is impossible since the number of odd vertices must be even. For the latter case, if three or fewer vertices of degree 6 in G, then it implies that G contains six or more vertices of degree 5 , as required.

