▶ Problem 9.2-34

Suppose that d_1, d_2, \ldots, d_n are the degrees of vertices in some graph. Show that, for any t < n,

$$\sum_{i=1}^{t} d_i \leqslant t(t-1) + \sum_{i=t+1}^{n} \min\{t, d_i\}.$$

Remark: The given condition (holding for all t < n) and the requirement that $\sum_{i=1}^{n} d_i$ is even are sufficient as well as necessary for the existence of a graph with a prescribed set d_1, \ldots, d_n of degrees.

Proof. Suppose that G = (V, E) is the graph we considered here and let v_1, v_2, \ldots, v_t be vertices with degrees d_1, d_2, \ldots, d_t , respectively. Then, the edges incident with v_i for $1 \leq i \leq t$ are of two types: (I) edges joining two of v_1, v_2, \ldots, v_t ; and (II) edges joining one of v_1, v_2, \ldots, v_t to a vertex $v \in V \setminus \{v_1, v_2, \ldots, v_t\}$. For each *i* with $1 \leq i \leq t$, we write $d_i = d'_i + d''_i$, where d'_i is the number of edges of type (I) incident with v_i , and d''_i is the number of edges of type (II) incident with v_i .

$$\sum_{i=1}^{t} d_i = \sum_{i=1}^{t} d'_i + \sum_{i=1}^{t} d''_i$$
(1)

Let H be the subgraph of G induced by the vertices v_1, v_2, \ldots, v_t . By Proposition 9.2.5, $\sum_{i=1}^{t} d'_i$ is twice the number of edges in H and this number is at most the number of edges in the complete graph K_t . That is,

$$\sum_{i=1}^{t} d'_i \leqslant 2 \binom{t}{2} = t(t-1).$$
(2)

Now $\sum_{i=1}^{t} d''_{i}$ is the sum of all edges of type (II) which is the sum of the number of edges with the form vv_{i} for $v \in V \setminus \{v_{1}, v_{2}, \ldots, v_{t}\}$ and $1 \leq i \leq t$. For each v, this number cannot exceed t, nor can it exceed the degree of v. Thus,

$$\sum_{i=1}^{t} d_i'' \leqslant \sum_{i=t+1}^{n} \min\{t, d_i\}.$$
(3)

Combining (1), (2), and (3), the result follows.