- Problem 9.2-34

Suppose that $d_{1}, d_{2}, \ldots, d_{n}$ are the degrees of vertices in some graph. Show that, for any $t<n$,

$$
\sum_{i=1}^{t} d_{i} \leqslant t(t-1)+\sum_{i=t+1}^{n} \min \left\{t, d_{i}\right\}
$$

Remark: The given condition (holding for all $t<n$) and the requirement that $\sum_{i=1}^{n} d_{i}$ is even are sufficient as well as necessary for the existence of a graph with a prescribed set d_{1}, \ldots, d_{n} of degrees.

Proof. Suppose that $G=(V, E)$ is the graph we considered here and let $v_{1}, v_{2}, \ldots, v_{t}$ be vertices with degrees $d_{1}, d_{2}, \ldots, d_{t}$, respectively. Then, the edges incident with v_{i} for $1 \leqslant i \leqslant t$ are of two types: (I) edges joining two of $v_{1}, v_{2}, \ldots, v_{t}$; and (II) edges joining one of $v_{1}, v_{2}, \ldots, v_{t}$ to a vertex $v \in V \backslash\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$. For each i with $1 \leqslant i \leqslant t$, we write $d_{i}=d_{i}^{\prime}+d_{i}^{\prime \prime}$, where d_{i}^{\prime} is the number of edges of type (I) incident with v_{i}, and $d_{i}^{\prime \prime}$ is the number of edges of type (II) incident with v_{i}. Thus,

$$
\begin{equation*}
\sum_{i=1}^{t} d_{i}=\sum_{i=1}^{t} d_{i}^{\prime}+\sum_{i=1}^{t} d_{i}^{\prime \prime} \tag{1}
\end{equation*}
$$

Let H be the subgraph of G induced by the vertices $v_{1}, v_{2}, \ldots, v_{t}$. By Proposition 9.2.5, $\sum_{i=1}^{t} d_{i}^{\prime}$ is twice the number of edges in H and this number is at most the number of edges in the complete graph K_{t}. That is,

$$
\begin{equation*}
\sum_{i=1}^{t} d_{i}^{\prime} \leqslant 2\binom{t}{2}=t(t-1) \tag{2}
\end{equation*}
$$

Now $\sum_{i=1}^{t} d_{i}^{\prime \prime}$ is the sum of all edges of type (II) which is the sum of the number of edges with the form $v v_{i}$ for $v \in V \backslash\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ and $1 \leqslant i \leqslant t$. For each v, this number cannot exceed t, nor can it exceed the degree of v. Thus,

$$
\begin{equation*}
\sum_{i=1}^{t} d_{i}^{\prime \prime} \leqslant \sum_{i=t+1}^{n} \min \left\{t, d_{i}\right\} \tag{3}
\end{equation*}
$$

Combining (1), (2), and (3), the result follows.

