- Problem 10.1-23 (b)

Let G be a connected graph with $n>1$ vertices. Prove that G has at least $n-1$ edges.
Proof. We use induction on n. If $n=2, G$ must have an edge (by connectedness), so the number of edges in G is $|E|=1=n-1$ and the result is true. Now assume that the result holds for connected graph with k vertices and suppose that G is connected with $k+1$ vertices. We must show that the number of edges in G is at least k. If G has no vertex of degree one, then G has at least $k+1$ edges by the result of the problem 10.1-23 (a), and we are done. On the other hand, we suppose that G contains a vertex w with degree one. Let H be the graph obtained from G by removing w and the edge e with which it is incident. Because a vertex of degree one cannot be an intermediate vertex of a path, H is a connected graph with k vertices. By the induction hypothesis, the smaller graph H has at least $k+1$ edges. So G has at least $(k-1)+1=k$ edges, as required. (The " +1 " counts the edge e.)

