- Problem 10.3-9

(a) Find the adjacency matrices A_{1} and A_{2} of the graphs G_{1} and G_{2} shown.

(b) Explain why the function $\phi: G_{1} \rightarrow G_{2}$ defined by

$$
\begin{array}{ll}
\phi\left(v_{1}\right)=u_{4}, & \phi\left(v_{2}\right)=u_{1},
\end{array} \quad \phi\left(v_{3}\right)=u_{5}, ~ 子 ~\left(v_{4}\right)=u_{6}, \quad \phi\left(v_{5}\right)=u_{3}, \quad \phi\left(v_{6}\right)=u_{2}, ~ \$
$$

is an isomorphism.
(c) Find a permutation matrix P that corresponds to the isomorphism in (b) such that $P A_{1} P^{T}=A_{2}$.

Solution. (a)

$$
A_{1}=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

(b) The function ϕ is an isomorphism because if the vertices of G_{1} are relabeled, v_{i} being replaced by $\phi\left(v_{i}\right)=u_{i}$, then the adjacency matrix of G_{1} relative to the u_{i} 's is A_{2}. (See Theorem 10.3.3.)
(c)

$$
P=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

