- Problem 11.4-5 (b)

Suppose $s_{1}, s_{2}, \ldots, s_{n}$ are the scores in a tournament. Prove that

$$
\sum_{i=1}^{n} s_{i}^{2}=\sum_{i=1}^{n}\left(n-1-s_{i}\right)^{2}
$$

and interpret this result in the context of a round-robin tournament.

Proof.

$$
\begin{aligned}
\sum_{i=1}^{n}\left(n-1-s_{i}\right)^{2} & =\sum_{i=1}^{n}\left[(n-1)^{2}-2(n-1) s_{i}+s_{i}^{2}\right] \\
& =\sum_{i=1}^{n}(n-1)^{2}-2(n-1) \sum_{i=1}^{n} s_{i}+\sum_{i=1}^{n} s_{i}^{2}
\end{aligned}
$$

Using the fact that $\sum_{i=1}^{n}(n-1)^{2}=n(n-1)^{2}$ and $\sum_{i=1}^{n} s_{i}=\binom{n}{2}=\frac{1}{2} n(n-1)$ (i.e., the sum of the scores is just the number of arcs, by Proposition 11.2.2) the result follows.

In a tournament with n players, each player plays $n-1$ games, so if a player wins s_{i} games, he loses $n-1-s_{i}$ games. The result says that the sum of the squares of all the wins in a tournament equals the sum of the squares of all the losses.

