(a) Suppose T is a tree with k vertices labeled C, each of degree at most 4. Enlarge T by adjoining sufficient vertices labeled H so that each vertex C has degree 4 and each vertex H has degree 1. Prove that the number of H vertices adjoined to the graph must be $2 k+2$.
(b) Can you prove (a) without assuming T is a tree?

Proof. (a) Let x be the number of H vertices adjoined. Since T has $k-1$ edges, and one new edge is added for each H, T has $(k-1)+x$ edges. Therefore, $\sum \operatorname{deg} v_{i}=2(k-1+x)$. But $\sum \operatorname{deg} v_{i}=4 k+x$ since each C has degree 4 and each H has degree 1. Therefore, $4 k+x=2 k-2+2 x$ and $x=2 k+2$.
(b) The above proof depends on T being a tree. The result is false otherwise. Consider a G which is a 3 -cycle and each vertex of G is labeled by C. After enlarging G by sufficient vertices labeled H, the graph is shown as follows.

Here $2 k+2=8$, but only six H 's are needed.

