## - Problem 13.1-13

Suppose a graph $G_{1}$ with $V_{1}$ vertices and $E_{1}$ edges is homeomorphic to a graph $G_{2}$ with $V_{2}$ vertices and $E_{2}$ edges. Prove that $E_{2}-V_{2}=E_{1}-V_{1}$.

Proof. Let $G_{1}$ be obtained from $G$ (with $V$ vertices and $E$ edges) by adding $k$ vertices to edges. Thus $V_{1}=V+k$ and $E_{1}=E+k$ (since there is one additional edge for each vertex added to an edge). Similarly, if $G_{2}$ is obtained from $G$ by adding $\ell$ vertices, then $V_{2}=V+\ell$ and $E_{2}=E+\ell$. The result now follows easily.

