## - Problem 13.1-19 (b)

If $G$ is a planar graph with $n$ connected components, prove that $E \leqslant 3 V-3 n$. Deduce that Theorem 13.1.4 holds for arbitrary planar graphs.

Proof. Let $G_{1}, G_{2}, \ldots, G_{n}$ be the connected components of $G$ such that each component $G_{i}$ has $V_{i}$ vertices and $E_{i}$ edges. If $V_{i} \geqslant 3$, by Theorem 13.1.4 we have $E_{i} \leqslant 3 V_{i}-6$. If $G_{i}$ has two vertices, then $E_{i}=1$, so $E_{i}=3 V_{i}-5$. If $G_{i}$ has one vertex, then $E_{i}=0$ and $E_{i}=3 V_{i}-3$. In all cases, $E_{i} \leqslant 3 V_{i}-3$, so $E=\sum E_{i} \leqslant 3 \sum V_{i}-3 n=3 V-3 n$. Finally, note that if $n \geqslant 2$, then $3 V-3 n \leqslant 3 n-6$ so Theorem 13.1.4 holds; while, if $n=1$, the graph is connected; we established $E \leqslant 3 V-6$ for such a graph in the text.

