► Exercise 10-1

Let G = (V, E) be a Hamiltonian graph. Prove that $k(G - S) \leq |S|$ for every nonempty proper subset S of vertices of G.

Proof. Let S be a non-empty proper subset of V. Suppose that k(G - S) = p and that G_1, G_2, \ldots, G_p are the components of G - S. Since G is Hamiltonian, G contains a hamiltonian cycle. Whenever C encounters a vertex of G_i for the last time $(1 \le i \le p)$, the next vertex of C must belong to S. This implies that S must contain at least p vertices, that is, $k(G - S) = p \le |S|$.