- Exercise 9-1

Let $S=\{2,3,4,7,11,13\}$. Draw the graph G whose vertex set is S and such that (i, j) is an edge of G for $i, j \in S$ if $i+j \in S$ or $|i-j| \in S$.

- Exercise 9-2

For a graph $G=(V, E)$, the number of vertices of G (i.e., $|V|)$ and the number of edges of G (i.e., $|E|$) are called order and size of G, respectively. The degree of every vertex of a graph G of order 25 and size 62 is $3,4,5$, or 6 . There are two vertices of degree 4 and 11 vertices of degree 6 . How many vertices of G have degree 5 ?

- Exercise 9-3

Prove that if a graph of order $3 n(n \geqslant 1)$ havs n vertices of each of the degrees $n-1, n$, and $n+1$, then n is even.

- Exercise 9-4

The degree of every vertex of a graph G of order $2 n+1 \geqslant 5$ is either $n+1$ or $n+2$. Prove that G contains at least $n+1$ vertices of degree $n+2$ or at least $n+2$ vertices of degree $n+1$.

- Exercise 9-5

If the sequence $x, 7,7,5,5,4,3,2$ is graphical, then what are the possible values of x $(0 \leqslant x \leqslant 7)$?

- Date: 2009/10/9 -

To do the exercises, you need the following definitions.

Definition 1 The complement of a graph $G=(V, E)$, denoted by \bar{G}, is the graph whose vertex set is the same as G and such that for each pair of vertices $u, v \in V, u v$ is an edge of \bar{G} if and only if $u v$ is not an edge of G. A graph G is self-complementary if $G \cong \bar{G}$.

Definition 2 Let $G=(V, E)$ be a graph of order n and let k be an integer such that $0 \leqslant k \leqslant n-1$. If the degree $\operatorname{deg} v=k$ for every vertex $v \in V$, then G is called a k-reguar graph or a regular graph of degree k. Moreover, we say that G is a regular graph if G is k-regular for some integer k.

- Exercise 9-6

Prove that if P and Q are two longest paths in a connected graph, then P and Q have at least one vertex in common.

- Exercise 9-7

Let G be a graph of order 5 or more. Prove that at most one of G and \bar{G} is bipartite.

- Exercise 9-8

Let G be a self-complementary graph of order $n=4 k$, where $k \geqslant 1$. Let $U=\{v: \operatorname{deg} v \leqslant$ $n / 2\}$ and $W=\{v: \operatorname{deg} v \geqslant n / 2\}$. Prove that if $|U|=|W|$, then G contains no vertex v such that $\operatorname{deg} v=n / 2$.

- Exercise 9-9

Let G_{1}, G_{2}, and G_{3} be pairwise disjoint connected regular graphs and let $G=G_{1}+$ $\left(G_{2}+G_{3}\right)$ be the graph obtained from G_{1}, G_{2}, and G_{3} by adding edges between every two vertices belonging to two of G_{1}, G_{2}, and G_{3}. Prove taht if G_{1} and $\overline{G_{1}}$ are Eulerian, but G_{2} and G_{3} are not Eulerian, then G is Eulerian.

- Exercise 9-10

How many non-isomorphic graphs have the degree sequence $s: 6,6,6,6,6,6,6,6,6$?

- Date: 2009/10/24 -

To do the exercises, you need the following definitions.

Definition 3 A graph G that is not connected is called disconnected. A connected subgraph of G that is not a proper subgraph of any other connected subgraph of G is a component of G. Let $k(G)$ denote the number of components of G.

Definition 4 The subdivision graph of a graph G, denoted by $S(G)$, is the graph obtained from G by deleting every edge $u v$ of G and replacing it by a vertex w of degree 2 that is joined to u and v.

- Exercise 10-1

Let $G=(V, E)$ be a Hamiltonian graph. Prove that $k(G-S) \leqslant|S|$ for every nonempty proper subset S of vertices of G.

- Exercise 10-2

Is it true that if $S(G)$ is Hamiltonian, then G is Eulerian?

- Exercise 10-3

Let u and v be non-adjacent vertices in a graph G of order n such that $\operatorname{deg} u+\operatorname{deg} v \geqslant n$. Prove that $G+u v$ is Hamiltonian if and only if G is Hamiltonian. (Hint: use Ore's Theorem. See Problem 10.2-16 in textbook.)

- Exercise 10-4

For a graph $G=(V, E)$ of order $n \geqslant 3$, then the graph $G(3)$ is obtained from G by adding a new vertex v_{S} for each 3 -element subset S of V and joining v_{S} to each vertex in S. Find all such graphs G for which $G(3)$ is Hamiltonian.

- Exercise 10-5

Determine whether the following graph is Hamiltonian.

