► Exercise 9-1

Let $S = \{2, 3, 4, 7, 11, 13\}$. Draw the graph G whose vertex set is S and such that (i, j) is an edge of G for $i, j \in S$ if $i + j \in S$ or $|i - j| \in S$.

Solution. In the following table, we show all values of i + j and |i - j| for $i, j \in S$, where the value written by RED font indicates that the value is in S.

(i,j)	i+j	i-j
(2,3)	5	1
(2,4)	6	2
(2,7)	9	5
(2,11)	13	9
(2,13)	15	11
(3,4)	7	1
(3,7)	10	4
(3,11)	14	8
(3, 13)	16	10
(4,7)	11	3
(4, 11)	15	7
(4, 13)	17	9
(7,11)	18	4
(7,13)	20	6
(11, 13)	24	2

From this table, we can see that G contains 6 vertices and 9 edges, which is as shown in the following figure.

